
Anybus CompactCom 40
EtherNet/IP

NETWORK GUIDE
SCM-1202-031 1.5 ENGLISH

Important User Information
Liability
Every care has been taken in the preparation of this document. Please inform HMS Industrial Networks AB of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks AB, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that
may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards.

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot as-
sume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights
HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications in
the USA and other countries.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Table of Contents Page

1 Preface ... 5
1.1 About this document ..5
1.2 Related Documents ...5
1.3 Document History ..5
1.4 Document Conventions ..5
1.5 Document Specific Conventions..6
1.6 Abbreviations ..6
1.7 Trademark Information ...6

2 About the Anybus CompactCom 40 EtherNet/IP .. 8
2.1 General...8
2.2 Features ...9

3 Basic Operation... 10
3.1 General Information ...10
3.2 Network Identity ... 11
3.3 Communication Settings...12
3.4 Beacon Based DLR (Device Level Ring)..14
3.5 Network Data Exchange...14
3.6 Web Interface ..15
3.7 E-mail Client ..15
3.8 Modular Device Functionality ..15
3.9 File System ...16

4 EtherNet/IP Implementation Details ... 18
4.1 General Information ...18
4.2 EtherNet/IP & CIP Implementation ..18
4.3 Using the Assembly Mapping Object (EBh) ..19
4.4 Socket Interface (Advanced Users Only)..21
4.5 Diagnostics ...22
4.6 QuickConnect..22
4.7 CIP Safety...22

5 FTP Server .. 23
5.1 General Information ...23
5.2 User Accounts ...23
5.3 Session Example ...24

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Table of Contents

6 Web Server.. 25
6.1 General Information ...25
6.2 Default Web Pages ..25
6.3 Server Configuration ..29

7 E-mail Client ... 32
7.1 General Information ...32
7.2 How to Send E-mail Messages ...32

8 Server Side Include (SSI) .. 33
8.1 General Information ...33
8.2 Include File..33
8.3 Command Functions ..33
8.4 Argument Functions ...48
8.5 SSI Output Configuration..52

9 JSON... 53
9.1 General Information ...53
9.2 JSON Objects..53
9.3 Example..61

10 CIP Objects ... 62
10.1 General Information ...62
10.2 Translation of Status Codes..63
10.3 Identity Object (01h)...64
10.4 Message Router (02h)..67
10.5 Assembly Object (04h) ...68
10.6 Connection Manager (06h) ...71
10.7 Parameter Object (0Fh)..75
10.8 DLR Object (47h) ...78
10.9 QoS Object (48h) ...79
10.10 Base Energy Object (4Eh) ..80
10.11 Power Management Object (53h)..82
10.12 ADI Object (A2h)..84
10.13 Port Object (F4h) ...86
10.14 TCP/IP Interface Object (F5h)...88
10.15 Ethernet Link Object (F6h)..92

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Table of Contents

11 Anybus Module Objects .. 97
11.1 General Information ...97
11.2 Anybus Object (01h) ..98
11.3 Diagnostic Object (02h) ..99
11.4 Network Object (03h) ... 100
11.5 Network Configuration Object (04h)... 101
11.6 Socket Interface Object (07h).. 110
11.7 SMTP Client Object (09h) ... 127
11.8 Anybus File System Interface Object (0Ah) .. 132
11.9 Network Ethernet Object (0Ch) ... 133
11.10 CIP Port Configuration Object (0Dh).. 135
11.11 Functional Safety Module Object (11h) .. 137

12 Host Application Objects ..143
12.1 General Information ... 143
12.2 Functional Safety Object (E8h).. 144
12.3 Application File System Interface Object (EAh)... 146
12.4 CIP Identity Host Object (EDh).. 147
12.5 Sync Object (EEh) ... 149
12.6 EtherNet/IP Host Object (F8h) .. 150
12.7 Ethernet Host Object (F9h) ... 159

A Categorization of Functionality ...163
A.1 Basic... 163
A.2 Extended... 163

B Implementation Details..164
B.1 SUP-Bit Definition .. 164
B.2 Anybus State Machine ... 164
B.3 Application Watchdog Timeout Handling.. 164

C Secure HICP (Secure Host IP Configuration Protocol)165
C.1 General... 165
C.2 Operation .. 165

D Technical Specification ...166
D.1 Front View... 166
D.2 Functional Earth (FE) Requirements.. 167
D.3 Power Supply .. 167
D.4 Environmental Specification.. 168
D.5 EMC Compliance... 168

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Table of Contents

E Timing & Performance ...169
E.1 General Information ... 169
E.2 Internal Timing... 169

F Backward Compatibility ..171
F.1 Initial Considerations.. 171
F.2 Hardware Compatibility .. 172
F.3 General Software... 176
F.4 Network Specific — EtherNet/IP.. 178

G Copyright Notices ...180

Preface 5 (188)

1 Preface
1.1 About this document

This document is intended to provide a good understanding of the functionality offered by the
Anybus CompactCom 40 EtherNet/IP. The document describes the features that are specific to
Anybus CompactCom 40 EtherNet/IP. For general information regarding Anybus CompactCom,
consult the Anybus CompactCom design guides.

The reader of this document is expected to be familiar with high level software design and com-
munication systems in general. The information in this network guide should normally be suffi-
cient to implement a design. However if advanced EtherNet/IP specific functionality is to be
used, in-depth knowledge of EtherNet/IP networking internals and/or information from the offi-
cial EtherNet/IP specifications may be required. In such cases, the persons responsible for the
implementation of this product should either obtain the EtherNet/IP specification to gain suffi-
cient knowledge or limit their implementation in such a way that this is not necessary.

For additional related documentation and file downloads, please visit the support website at
www.anybus.com/support.

1.2 Related Documents
Document Author Document ID
Anybus CompactCom 40 Software Design Guide HMS HMSI-216-125
Anybus CompactCom M40 Hardware Design Guide HMS HMSI-216-126
Anybus CompactCom B40 Design Guide HMS HMSI-27-230
Anybus CompactCom Host Application Implementation
Guide

HMS HMSI-27-334

CIP specification, Volumes 1 (CIP Common) and 2 (Ether-
Net/IP)

ODVA

1.3 Document History
1.1 2017-01-18 FM to DOX, change of document number from HMSI-27-212 to SCM-

1202-031. Version numbering restarted.
M12 connectors added
Minor corrections and updates

1.2 2017-05-23 Ethernet Host Object updated (disabling of DHCP)
Port Object updated

1.3 2017-07-11 Added appendix for backward compatibility
Updated TCP/IP Interface object (CIP)

1.4 2017-11-28 Added Assembly Mapping Object guide
1.5 2017-12-15 Updated Copyright Appendix

1.4 Document Conventions
Ordered lists are used for instructions that must be carried out in sequence:

1. First do this

2. Then do this

Unordered (bulleted) lists are used for:

• Itemized information

• Instructions that can be carried out in any order

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

http://www.anybus.com/support

Preface 6 (188)

...and for action-result type instructions:

► This action...

➨ leads to this result

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

Monospaced text is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Document Conventions, p. 5

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or
damage to the equipment, or to avoid a network security risk.

Caution
This instruction must be followed to avoid a risk of personal injury.

WARNING
This instruction must be followed to avoid a risk of death or serious injury.

1.5 Document Specific Conventions
• The terms “Anybus” or “module” refers to the Anybus CompactCom module.

• The terms “host” or “host application” refer to the device that hosts the Anybus.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the hex-
adecimal value.

• A byte always consists of 8 bits.

• The terms “basic” and “extended” are used to classify objects, instances and attributes.

1.6 Abbreviations
Abbreviation Meaning
API assigned packet interval
RPI requested packet interval
T target (in this case the module)
O origin (in this case the master)

1.7 Trademark Information
Anybus® is a registered trademark of HMS Industrial Networks AB.

EtherNet/IP is a trademark of ODVA, Inc.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

http://www.hms-networks.com

Preface 7 (188)

All other trademarks are the property of their respective holders.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

About the Anybus CompactCom 40 EtherNet/IP 8 (188)

2 About the
Anybus CompactCom 40 EtherNet/IP

2.1 General
The Anybus CompactCom 40 EtherNet/IP communication module provides instant EtherNet/IP
conformance tested connectivity via the patented Anybus CompactCom host interface. Any de-
vice that supports this standard can take advantage of the features provided by the module, al-
lowing seamless network integration regardless of network type. The module supports both
linear and ring network topology (DLR, Device Level Ring).

The modular approach of the Anybus CompactCom 40 platform allows the CIP-object imple-
mentation to be extended to fit specific application requirements. Furthermore, the Identity Ob-
ject can be customized, allowing the end product to appear as a vendor-specific
implementation rather than a generic Anybus module.

This product conforms to all aspects of the host interface for Anybus CompactCom 40 modules
defined in the Anybus CompactCom 40 Hardware and Software Design Guides, making it fully
interchangeable with any other device following that specification. Generally, no additional net-
work related software support is needed, however in order to be able to take full advantage of
advanced network specific functionality, a certain degree of dedicated software support may be
necessary.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

About the Anybus CompactCom 40 EtherNet/IP 9 (188)

2.2 Features
• Two EtherNet/IP ports

• Ethernet connectors or M12 connectors

• Max. read process data: 1448 bytes

• Max. write process data: 1448 bytes

• Max. process data (read + write, in bytes): 2896 bytes

• Beacon Based DLR (Device Level Ring) and linear network topology supported

• Black channel interface, offering a transparent channel supporting CIP Safety.

• 10/100 Mbit, full/half duplex operation

• Web server w. customizable content

• FTP server

• Email client

• Server Side Include (SSI) functionality

• JSON functionality

• Customizable Identity Information

• Up to 65535 ADIs

• CIP Parameter Object support

• Expandable CIP-object implementation

• Supports unconnected CIP routing

• Transparent Socket Interface

• Modular Device functionality

• QuickConnect supported

• Multiple IO assembly instances can be created

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 10 (188)

3 Basic Operation
3.1 General Information
3.1.1 Software Requirements

No additional network support code needs to be written in order to support the Anybus Com-
pactCom 40 EtherNet/IP, however due to the nature of the EtherNet/IP networking system, cer-
tain restrictions must be taken into account:

• Certain functionality in the module requires that the command Get_Instance_Number_By_
Order (Application Data Object, FEh) is implemented in the host application.

• Up to 5 diagnostic instances (See Diagnostic Object (02h), p. 99) can be created by the
host application during normal conditions. An additional 6th instance may be created in
event of a major fault. This limit is set by the module, not by the network.

• EtherNet/IP in itself does not impose any specific timing demands when it comes to acyclic
requests (i.e. requests towards instances in the Application Data Object), however it is gen-
erally recommended to process and respond to such requests within a reasonable time pe-
riod. The application that sends the request, also decides the timeout, e.g. EIPScan
employs a timeout of 10 seconds.

• The use of advanced CIP-specific functionality may require in-depth knowledge in CIP net-
working internals and/or information from the official CIP and EtherNet/IP specifications. In
such cases, the people responsible for the implementation of this product is expected ei-
ther to obtain these specifications to gain sufficient knowledge or limit their implementation
is such a way that this is not necessary.

See also...

• Diagnostic Object (02h), p. 99 (Anybus Module Objects)

• Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”

For in depth information regarding the Anybus CompactCom software interface, consult the
Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 11 (188)

3.1.2 Electronic Data Sheet (EDS)
On EtherNet/IP, the characteristics of a device is stored in an ASCII data file with the suffix EDS.
This file is used by configuration tools etc. when setting up the network configuration. HMS In-
dustrial Networks AB supplies a standard (generic) EDS file, which corresponds to the default
settings in the module. However, due to the flexible nature of the Anybus CompactCom con-
cept, it is possible to alter the behavior of the product in ways which invalidate the generic EDS
file. In such case, a custom EDS file needs to be created, which in turn invalidates the default
identity information and require re-certification of the product.

Since the module implements the Parameter Object, it is possible for configuration tools such
as RSNetWorx to automatically generate a suitable EDS-file. Note that this functionality re-
quires that the command Get_Instance_Number_By_Order (Application Data Object, FEh) has
been implemented in the host application.

See also..

• Parameter Object (0Fh), p. 75 (CIP object)

• Anybus CompactCom 40 Software Design Guide, “Application Data Object (FEh)”

HMS Industrial Networks AB approves use of the standard EDS-file only under the
condition that it matches the actual implementation and that the identity information
remains unchanged.

3.2 Network Identity
By default, the module uses the following identity settings:

Vendor ID: 005Ah (HMS Industrial Networks)

Device Type: 002Bh (Generic Device)

Product Code: 0037h (Anybus CompactCom 40 EtherNet/IP)

Product Name: “Anybus CompactCom 40 EtherNet/IP(TM)”

Optionally, it is possible to customize the identity of the module by implementing the corre-
sponding instance attributes in the EtherNet/IP Host Object.

See also...

• Identity Object (01h), p. 64 (CIP object)

• EtherNet/IP Host Object (F8h), p. 150 (Host Application Object)

According to the CIP specification, the combination of Vendor ID and serial number
must be unique. It is not permitted to use a custom serial number in combination
with the HMS Vendor ID (005Ah), nor is it permitted to choose Vendor ID arbitrarily.
Failure to comply to this requirement will induce interoperability problems and/or
other unwanted side effects. HMS approves use of the HMS Vendor ID (005Ah), in
combination with the default serial number, under the condition that the
implementation requires no deviations from the standard EDS-file.

To obtain a Vendor ID, contact the ODVA.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 12 (188)

3.3 Communication Settings
Network related communication settings are grouped in the Network Configuration Object
(04h), and includes:

IP settings These settings must be set properly in order for the module to be able to
participate on the network.

The module supports DHCP, which may be used to retrieve the IP settings from a
DHCP-server automatically. DHCP is enabled by default, but can be disabled if
necessary.

Physical Link Settings By default, the module uses auto negotiation to establish the physical link
settings, however it is possible to force a specific setting if necessary.

The parameters in the Network Configuration Object (04h) are available from the network
through the built in web server, and through the TCP/IP Interface Object (CIP).

See also...

• Web Server, p. 25

• TCP/IP Interface Object (F5h), p. 88 (CIP object)

• Ethernet Link Object (F6h), p. 92 (CIP object)

• Network Configuration Object (04h), p. 101 (Anybus Module Object)

• Secure HICP (Secure Host IP Configuration Protocol), p. 165

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 13 (188)

3.3.1 Communication Settings in Stand Alone Shift Register Mode
If the Anybus CompactCom is used stand alone, there is no application from which to set the IP
address. The IP address is instead set using the DIP1 switches (IP address byte 3) and the vir-
tual attributes (Ethernet Host object (F9h), attribute #17), that are written to memory during set-
up (IP address byte 0 - 2). A flowchart is shown below.

Start

DIP1 switch settings
(0 - 255)

 255 0

1 - 254

Values stored in
 Network Con�guration
Object instances #3 - #6

 will be used

Ethernet
 Host Object (F9h),

attribute #17
implemented

Yes

No Use default value for
IP address bytes 0 - 2:

192.168.0.X

Use DIP switch settings
for IP address byte 3

End

Use attribute #17 values
for IP address bytes 0 - 2

IP address is stored in Network
Con�guration Object (04h),

 instance #3

Check for DHCP
availability

Yes

No

DHCP will be used for
communication settings,

that will be stored in
Network Con�guration

Object (04h), instances #3 - #6

Values stored in
 Network Con�guration
Object instances #3 - #6

 will be used

Network Con�guration Object (04h)
Instance #4, Subnet mask: 255.255.255.0

Instance #5 Gateway address: 0.0.0.0
Instance 6, DHCP: OFF

Fig. 1

See also ...

• Ethernet Host Object (F9h), p. 159

• Anybus CompactCom M40 Hardware Design Guide

• Network Configuration Object (04h), p. 101

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 14 (188)

3.4 Beacon Based DLR (Device Level Ring)
Device Level Ring (DLR) is a network technology for industrial applications that uses embedded
switch functionality in automation end devices, such as programmable automation controllers
and I/O modules, to enable Ethernet ring network topologies at the device level. DLR technol-
ogy adds network resilience to optimize machine operation. Beacon based DLR networks con-
sist of a ring supervisor and a number of ring nodes, and use “beacons” to detect breaks in the
ring. When a DLR network detects a break in the ring, it provides ways to alternatively route the
data to recover the network. Diagnostics built into DLR products can identify the point of failure,
thus helping to speed maintenance and reduce repair time. The Anybus CompactCom 40
EtherNet/IP implements the DLR protocol, and it is enabled by default. The device is able to
process and act on beacon frames sent by ring supervisors, and supports beacon rates down
to 100 μs. If needed, the DLR functionality can be disabled. This can be done by setting attrib-
ute #31 (Enable DLR) in the EtherNet/IP Host Object to False. See EtherNet/IP Host Object
(F8h), p. 150.

3.5 Network Data Exchange
3.5.1 Application Data

Application Data Instances (ADIs) are represented through the ADI Object (CIP). Each instance
within this objects corresponds directly to an instance in the Application Data Object on the host
application side.

Accessible range of ADIs is 1 to 65535.

See also...

• Parameter Object (0Fh), p. 75 (CIP object)

• ADI Object (A2h), p. 84 (CIP object)

3.5.2 Process Data
Process Data is represented as dedicated instances in the Assembly Object (CIP).

See also...

• Assembly Object (04h), p. 68 (CIP object)

• Connection Manager (06h), p. 71 (CIP object)

3.5.3 Translation of Data Types
The Anybus data types are translated to CIP-standard and vice versa as follows:

Anybus Data Type CIP Data Type Comments
BOOL BOOL Each ADI element of this type occupies one byte.
ENUM USINT
SINT8 SINT
UINT8 USINT
SINT16 INT Each ADI element of this type occupies two bytes.
UINT16 UINT
SINT32 DINT Each ADI element of this type occupies four bytes.
UINT32 UDINT
FLOAT REAL
CHAR SHORT_

STRING
SHORT_STRING consists of a single-byte length field (which in
this case represents the number of ADI elements) followed by the
actual character data (in this case the actual ADI elements). This
means that a 10-character string occupies 11 bytes.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 15 (188)

Anybus Data Type CIP Data Type Comments
SINT64 LINT Each ADI element of this type occupies eight bytes.
UINT64 ULINT
BITS8 BYTE Each ADI element of this type occupies one byte.
BITS16 WORD Each ADI element of this type occupies two bytes.
BITS32 DWORD Each ADI element of this type occupies four bytes.
OCTET USINT
BITS1-7 BYTE Bit fields of size 1 - 7
PAD0-8 BYTE Bit fields of size 0 - 8 used for padding
PAD9-16 BYTE Bit fields of size 9 - 16 used for padding

3.6 Web Interface
The web interface can be fully customized to suit a particular application. Dynamic content can
be created by means of JSON and SSI scripting. Data and web pages are stored in a FLASH-
based file system, which can be accessed using any standard FTP-client.

See also...

• File System, p. 16

• FTP Server, p. 23

• Web Server, p. 25

• Server Side Include (SSI), p. 33

• JSON, p. 53

3.7 E-mail Client
The built-in e-mail client enables the host application to send e-mail messages stored in the file
system, or defined directly within the SMTP Client Object (09h). Messages are scanned for SSI
content, which means it’s possible to embed dynamic information from the file system.

See also...

• File System, p. 16

3.8 Modular Device Functionality
Modular devices consist of a backplane with a certain number of slots. The first slot is occupied
by the “coupler” which contains the Anybus CompactCom module. All other slots may be empty
or occupied by modules.

When mapping ADIs to process data the application shall map the process data of each module
in slot order.

A list of modules in a Modular Device is available to the EtherNet/IP network master by a re-
quest to the CIP Identity object.

See also ...

• “Modular Device Object (ECh)” (see Anybus CompactCom 40 Software Design Guide)

• Identity Object (01h), p. 64 (CIP object)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 16 (188)

3.9 File System
3.9.1 Overview

The Anybus CompactCom 40 EtherNet/IP has an in-built file system, that can be accessed from
the application and from the network. Three directories are predefined:

VFS The virtual file system that e.g. holds the web pages of the module. The virtual file
system is enabled by default in the Anybus File System Interface Object (0Ah).

Application This directory provides access to the application file system through the
Application File System Interface Object (EAh) (optional).

Firmware Firmware updates are stored in this directory.

In the firmware folder, it is not possible to use append mode when writing a file. Be sure to use
write mode only.

Anybus
CompactCom
File system

File 1

File 2

VFS

File 1

File 2

Application

Application
File system

File A1

File A2

Directory A1

File A1:1

File A1:2

The Anybus CompactCom accesses
the application file system through the
Application File System Interface Object.

Anybus CompactCom Application

Firmware

Fig. 2

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Basic Operation 17 (188)

3.9.2 General Information
The built-in file system hosts 28 MByte of non volatile storage, which can be accessed by the
HTTP and FTP servers, the email client, and the host application (through the Anybus File Sys-
tem Interface Object (0Ah)).

The maximum number of directories and files, that can be stored in the root directory, is 511 if
only short filenames are used (8 bytes name + 3 bytes extension). The number of files that can
be stored in other directories, than the root directory, is unlimited.

The file system uses the following conventions:

• \ (backslash) is used as a path separator

• Names may contain spaces, but must not begin or end with one.

• Valid characters in names are ASCII character numbers less than 127, excluding the fol-
lowing characters: \ / : * ? “ < > |

• Names cannot be longer than 48 characters

• A path cannot be longer than 126 characters (filename included)

See also ...

• FTP Server, p. 23

• Web Server, p. 25

• E-mail Client, p. 32

• Server Side Include (SSI), p. 33

• Anybus File System Interface Object (0Ah), p. 132

• Application File System Interface Object (EAh), p. 146

The file system is located in flash memory. Due to technical reasons, each flash
segment can be erased approximately 100000 times before failure, making it
unsuitable for random access storage.

The following operations will erase one or more flash segments:

• Deleting, moving or renaming a file or directory

• Writing or appending data to an existing file

• Formatting the file system

3.9.3 System Files
The file system contains a set of files used for system configuration. These files, known as “sys-
tem files”, are regular ASCII files which can be altered using a standard text editor (such as the
Notepad in Microsoft Windows™). The format of these files are, with some exceptions, based on
the concept of keys, where each keys can be assigned a value, see below.

Example 1:

[Key1]
value of Key1

[Key2]
value of Key2

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

EtherNet/IP Implementation Details 18 (188)

4 EtherNet/IP Implementation Details
4.1 General Information

This chapter covers EtherNet/IP specific details in the Anybus implementation. Note that the
use of such functionality may require in-depth knowledge in EtherNet/IP networking internals
and/or information from the official EtherNet/IP and CIP specifications. In such cases, the peo-
ple responsible for the implementation of this product are expected either to obtain these speci-
fications to gain sufficient knowledge or limit their implementation in such a way that this is not
necessary. The EDS file must be changed to reflect all changes.

4.2 EtherNet/IP & CIP Implementation
By default, the module supports the generic CIP profile. Optionally, it is possible to re-route re-
quests to unimplemented CIP objects to the host application, thus enabling support for other
profiles etc.

To support a specific profile, perform the following steps:

1. Set up the identity settings in the EtherNet/IP Host Object according to profile requirements.

2. Implement the Assembly Mapping Object in the host application.

3. Set up the Assembly Instance Numbers according to profile requirements.

4. Enable routing of CIP messages to the host application in the EtherNet/IP Host Object.

5. Implement the required CIP objects in the host application.

See also...

• Using the Assembly Mapping Object (EBh), p. 19

• EtherNet/IP Host Object (F8h), p. 150 (Host Application Object), details for the command
Process_CIP_Object_Request.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

EtherNet/IP Implementation Details 19 (188)

4.3 Using the Assembly Mapping Object (EBh)
4.3.1 Introduction

This guide will describe how to map CIP instances to ADI data, using the assembly mapping ob-
ject (EBh).

4.3.2 Adding Data - The Application Data Object
According to the Anybus object model, all data that is used in the application must be repre-
sented by application data instances (ADIs). ADIs are small portions of structured data, each
representing only one of three possible different types: variable, array or structure.

See the Application Data Object (FEh) in the Software Design Guide for more information.

Below is an example with 30 ADIs. Instances 1 - 6 and 30 are implemented in the application,
and 7 - 29 are not implemented.

Application Data Object (FEh) Instances
Instance # Implemented Order #
1 Yes 1
2 Yes 2
3 Yes 3
4 Yes 4
5 Yes 5
6 Yes 6
7...29 No -
30 Yes 7

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

EtherNet/IP Implementation Details 20 (188)

4.3.3 Grouping Data - The Assembly Mapping Object
The assembly mapping object makes it possible to create an arbitrary number of process data
sets, called assembly mappings. Each assembly mapping instance represents a different logi-
cal set of process data, that can be chosen by the network and received over a single
connection.

Every instance of the assembly mapping object, as seen below, contains an ADI map, referring
to an arbitrary number of ADIs.

The instance numbers can be set freely.

Assembly Mapping Object (EBh) Instances
Instance # Type ADI Map
1 Read 1, 2
2 Read 2, 3
10 Write 3, 4, 30
11 Write 4, 5
30 Read 5, 6
51 Write 6, 30

There are two object instance attributes in the assembly mapping object, called Write PD In-
stance List and Read PD Instance List. These two attributes contain references to all read in-
stances and all write instances, respectively. The example above will automatically generate
the following content in these two attributes.

Name Attribute Values
Write PD Instance List 11 10, 11, 51
Read PD Instance List 12 1, 2, 30

The attributes Write PD Instance List and Read PD Instance List adopts the view of the network,
e.g. an input will produce data on the network and an output will consume data on the network.

Write PD Instance List will contain all assembly mapping object instances with type “Read”.
Read PD Instance List will contain all assembly mapping object instances with type “Write”.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

EtherNet/IP Implementation Details 21 (188)

4.3.4 Configuring CIPAssembly Numbers
The read and write instance list attributes in the assembly mapping object are bound to two cor-
responding attributes in the EtherNet/IP host object, according to the following table.

This routes application data to CIP assembly data, by linking CIP instance numbers to assem-
bly mapping object instances.

The lists are matched index-wise, and must thus be of equal length.

Assembly Mapping Object
Attribute

Value Value EtherNet/IP Host Object Instance
Attribute

11 - Write PD Instance List 10 <—> 10 7 - Producing Instance Number
11 <—> 22
51 <—> 100

12 - Read PD Instance List 1 <—> 1 8 - Consuming Instance Number
2 <—> 2
30 <—> 150

For conformity with the CIP specification, both the Write_Assembly_Data and the
Read_Assembly_Data services must be implemented.

4.3.5 Going Forward
During the initialization phase, in the NW_INITstate, all write assemblies (e.g. the instances of
the assembly mapping object with type“write”) will be remapped to the write process data area.
For this to happen, the device will issue the Remap_ADI_Write_Area command to the applica-
tion data object in the host.

See the appendix about “Runtime Remapping of Process Data” in the Anybus CompactCom 40
Software Design Guide for more information.

When the network has been initialized, the device transitions from NW_INIT to the WAIT_
PROCESS state. When the device receives a forward open request, the producing/consuming
parameters in the request are verified and matched against the EtherNet/IP Host Object in-
stance numbers (producing/consuming)

If the verification is successful, the read process data is remapped and the device transitions to
the PROCESS_ACTIVE state. The I/O connection will then be established, and data can be ex-
changed over the network.

4.4 Socket Interface (Advanced Users Only)
The built in socket interface allows additional protocols to be implemented on top of TCP/IP.

See also..

• Socket Interface Object (07h), p. 110 (Anybus Module Object)

• Message Segmentation, p. 125

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

EtherNet/IP Implementation Details 22 (188)

4.5 Diagnostics
The severity value of all pending events are combined (using logical OR) and copied to the cor-
responding bits in the “Status” attribute of the Identity Object (CIP).

See also...

• Identity Object (01h), p. 64 (CIP Object)

• Diagnostic Object (02h), p. 99 (Anybus Module Object)

4.6 QuickConnect
The module supports the QuickConnect functionality. It is enabled in the EtherNet/IP Host Ob-
ject. The module fulfills Class A with a startup time of less than 180 ms, with 16 bytes of I/O data
mapped with parallel, SPI or shift register application interface.

See also ...

• EtherNet/IP Host Object (F8h), p. 150 (Host Application Object)

• TCP/IP Interface Object (F5h), p. 88 (CIP object)

4.7 CIP Safety
The Anybus CompactCom 40 EtherNet/IP supports the CIP safety profile. This profile makes it
possible for a user to send data on a black channel interface, i.e. a safe channel over EtherNet/
IP using an add-on safety module, e.g. the IXXAT Safe T100. For an application to support CIP
safety, the Functional Safety Object (E8h, host application object) has to be implemented. The
Anybus CompactCom serial channel is used for the functional safety communication. When this
channel is used for the host application, a second separate serial channel is implemented for
the functional safety communication. See the Anybus CompactCom Hardware Design Guide
for more information.

See ...

• Functional Safety Module Object (11h), p. 137

• Functional Safety Object (E8h), p. 144

4.7.1 Safety Module Firmware Upgrade
The firmware of the connected safety module can be upgraded through the Anybus Compact-
Com. The safety firmware (hiff file) has to be downloaded to the firmware directory in the Any-
bus CompactCom. At restart, the Anybus CompactCom detects and validates the firmware.
Firmware upgrade in progress is indicated to the application by attribute #5 (instance #1) in the
Functional Safety Object (E8h), which is set to TRUE during the firmware upgrade. The Anybus
CompactCom will need more time to initialize , please do not restart the module during this time.

4.7.2 Reset Request from Network
When a reset request arrives from the network, a delay of 1 s is introduced before the Anybus
CompactCom 40 EtherNet/IP is reset, if CIP safety is enabled.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

FTP Server 23 (188)

5 FTP Server
5.1 General Information

The built-in FTP-server makes it easy to manage the file system using a standard FTP client. It
can be disabled using attribute #6 in the Ethernet Host Object (F9h).

By default, the following port numbers are used for FTP communication:

• TCP, port 20 (FTP data port)

• TCP, port 21 (FTP command port)

The FTP server supports up to two concurrent clients.

5.2 User Accounts
User accounts are stored in the configuration file \ftp.cfg. This file holds the usernames, pass-
words, and home directory for all users. Users are not able to access files outside of their home
directory.

File Format:

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
User3:Password3:Homedirectory3

Optionally, the UserN:PasswordN-section can be replaced by a path to a file containing a list of
users as follows:

File Format (\ftp.cfg):

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
.
.
UserN:PasswordN:HomedirectoryN
\path\userlistA:HomedirectoryA
\path\userlistB:HomedirectoryB

The files containing the user lists shall have the following format:

File Format:

User1:Password1
User2:Password2
User3:Password3
.
.
.UserN:PasswordN

Notes:

• Usernames must not exceed 16 characters in length.

• Passwords must not exceed 16 characters in length.

• Usernames and passwords must only contain alphanumeric characters.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

FTP Server 24 (188)

• If \ftp.cfg is missing or cannot be interpreted, all username/password combinations will be
accepted and the home directory will be the FTP root (i.e. \ftp\).

• The home directory for a user must also exist in the file system, if the user shall be able to
log in. It is not enough just to add the user information to the ftp.cfg file.

• If Admin Mode has been enabled in the Ethernet Object, all username/password combina-
tions will be accepted and the user will have unrestricted access to the file system (i.e. the
home directory will be the system root). The vfs folder is read-only.

• It is strongly recommended to have at least one user with root access (\) permission. If not,
Admin Mode must be enabled each time a system file needs to be altered (including \ftp.
cfg).

5.3 Session Example
The Windows Explorer features a built-in FTP client which can easily be used to access the file
system as follows:

1. Open the Windows Explorer.

2. In the address field, type FTP://<user>:<password>@<address>

– - Substitute <address> with the IP address of the Anybus module

– - Substitute <user> with the username

– - Substitute <password> with the password

3. Press Enter. The Explorer will now attempt to connect to the Anybus module using the
specified settings. If successful, the file system will be displayed in the Explorer window.

Fig. 3

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Web Server 25 (188)

6 Web Server
6.1 General Information

The built-in web server provides a flexible environment for end-user interaction and configura-
tion purposes. JSON, SSI and client-side scripting allow access to objects and file system data,
enabling the creation of advanced graphical user interfaces.

The web interfaces are stored in the file system, which can be accessed through the FTP server.
If necessary, the web server can be completely disabled in the Ethernet Host Object (F9h).

See also...

• FTP Server, p. 23

• Server Side Include (SSI), p. 33

• JSON, p. 53

• Ethernet Host Object (F9h), p. 159

6.2 Default Web Pages
The default web pages provide access to:

• Network configuration parameters

• Network status information

• Access to the host application ADIs

The default web pages are built of files stored in a virtual file system accessible through the vfs
folder. These files are read only and cannot be deleted or overwritten. The web server will first
look for a file in the web root folder. If not found it will look for the file in the vfs folder, making it
appear as the files are located in the web root folder. By loading files in the web root folder with
exactly the same names as the default files in the vfs folder, it is possible to customize the web
pages, replacing such as pictures, logos and style sheets.

If a complete customized web system is designed and no files in the vfs folder are to be used, it
is recommended to turn off the virtual file system completely, see the File System Interface
Object.

See also ...

• File System, p. 16

• Anybus File System Interface Object (0Ah), p. 132

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Web Server 26 (188)

6.2.1 Network Configuration
The network configuration page provides interfaces for changing TCP/IP and SMTP settings in
the Network Configuration Object.

Fig. 4

Fig. 5

The module needs to be reset for the TCP/IP and SMTP settings to take effect. The Ethernet
Configuration settings will take effect immediately.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Web Server 27 (188)

IP Configuration
The module needs a reset for any changes to take effect.

Name Description
DHCP Enable or disable DHCP

Default value: enabled
IP address The TCP/IP settings of the module

Default values: 0.0.0.0 Value ranges: 0.0.0.0 - 255.255.255.255Subnet mask
Gateway
Host name IP address or name

Max 64 characters
Domain name IP address or name

Max 48 characters
DNS 1 Primary and secondary DNS server, used to resolve host name

Default values: 0.0.0.0 Value ranges: 0.0.0.0 - 255.255.255.255DNS 2

Ethernet Configuration
Changes will take effect immediately.

Name Description
Port 1 Ethernet speed/duplex settings

Default value: autoPort 2

SMTP Settings
The module needs a reset before any changes take effect

Name Description
Server IP address or name

Max 64 characters
User Max 64 characters
Password Max 64 characters
Confirm password

6.2.2 Ethernet Statistics Page
The Ethernet statistics web page contains the following information:

Ethernet Link Description
Port 1 Speed: The current link speed.

Duplex: The current duplex configuration.
Port 2 Speed: The current link speed.

Duplex: The current duplex configuration.

Ethernet/IP Statistics Description
Established Class1 Connections Current number of established class1 connections
Established Class3 Connections Current number of established class3 connections
Connection Open Requests Number of received connection open requests
Connection Open Format
Rejects

Connection open requests rejected due to request format error

Connection Open Resource
Rejects

Connection open requests rejected due to lack of resources

Connection Open Other Rejects Connection open requests rejected due to other reasons
Connection Close Requests Number of received connection open requests

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Web Server 28 (188)

Ethernet/IP Statistics Description
Connection Close Format
Rejects

Connection close requests rejected du to request format error

Connection Close Other Rejects Connection close requests rejected due to other reasons
Connection Timeouts Number of connection timeouts

Interface Counters Description
In Octets: Received bytes.
In Ucast Packets: Received unicast packets.
In NUcast packets: Received non unicast packets (broadcast and multicast).
In Discards: Received packets discarded due to no available memory buffers.
In Errors: Received packets discarded due to reception error.
In Unknown Protos: Received packets with unsupported protocol type.
Out Octets: Sent bytes.
Out Ucast packets: Sent unicast packets.
Out NUcast packets: Sent non unicast packets (broadcast and multicast).
Out Discards: Outgoing packets discarded due to no available memory buffers.
Out Errors: Transmission errors.

Media Counters Description
Alignment Errors Frames received that are not an integral number of octets in length.
FCS Errors Frames received that do not pass the FCS check.
Single Collisions Successfully transmitted frames which experienced exactly one collision.
Multiple Collisions Successfully transmitted frames which experienced more than one

collision.
SQE Test Errors Number of times SQE test error messages are generated.

(Not provided with current PHY interface.)
Deferred Transmissions Frames for which first transmission attempt is delayed because the me-

dium is busy.
Late Collisions Number of times a collision is detected later than 512 bit-times into the

transmission of a packet.
Excessive Collisions Frames for which a transmission fails due to excessive collisions.
MAC Receive Errors Frames for which reception of an interface fails due to an internal MAC

sublayer receive error.
MAC Transmit Errors Frames for which transmission fails due to an internal MAC sublayer re-

ceive error.
Carrier Sense Errors Times that the carrier sense condition was lost or never asserted when at-

tempted to transmit a frame.
Frame Size Too Long Frames received that exceed the maximum permitted frame size.
Frame Size Too Short Frames received that are shorter than lowest permitted frame size.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Web Server 29 (188)

6.3 Server Configuration
6.3.1 General Information

Basic web server configuration settings are stored in the system file \http.cfg. This file holds the
web server name, root directory for the web interface, content types, and a list of file types
which shall be scanned for SSI.

File Format:
[ServerName]
WebServerName
[WebRoot]
\web

[FileTypes]
FileType1:ContentType1
FileType2:ContentType2
...
FileTypeN:ContentTypeN

[SSIFileTypes]
FileType1
FileType2
...
FileTypeN

Web Server Name
[ServerName]

Configures the web server name included in the HTTP header of the responses
from the module.

Web Root Directory
[WebRoot]

The web server cannot access files outside this directory.

Content Types
[FileTypes]

A list of file extensions and their reported content types.

See also...

Default content types below

SSI File Types
[SSIFileTypes]

By default, only files with the extension “shtm” are scanned for SSI. Additional SSI
file types can be added here as necessary.

The web root directory determines the location of all files related to the web interface. Files out-
side of this directory and its subdirectories cannot be accessed by the web server.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Web Server 30 (188)

6.3.2 Index page
The module searches for possible index pages in the following order:

1. <WebRoot>\index.htm

2. <WebRoot>\index.html

3. <WebRoot>\index.shtm

4. <WebRoot>\index.wml

Substitute <WebRoot> with the web root directory specified in \http.cfg.

If no index page is found, the module will default to the virtual index file (if enabled).

See also ...

• Default web pages

6.3.3 Default Content Types
By default, the following content types are recognized by their file extension:

File Extension Reported Content Type
htm, html, shtm text/html
gif image/gif
jpeg, jpg, jpe image/jpeg
png image/x-png
js application/x-javascript
bat, txt, c, h, cpp, hpp text/plain
zip application/x-zip-compressed
exe, com application/octet-stream
wml text/vnd.wap.wml
wmlc application/vnd.wap.wmlc
wbmp image/vnd.wap.wbmp
wmls text/vnd.wap.wmlscript
wmlsc application/vnd.wap.wmlscriptc
xml text/xml
pdf application/pdf
css text/css

Content types can be added or redefined by adding them to the server configuration file.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Web Server 31 (188)

6.3.4 Authorization
Directories can be protected from web access by placing a file called “web_accs.cfg” in the di-
rectory to protect. This file shall contain a list of users that are allowed to access the directory
and its subdirectories.

Optionally, a login message can be specified by including the key [AuthName]. This message
will be displayed by the web browser upon accessing the protected directory.

File Format:
Username1:Password1
Username2:Password2
...
UsernameN:PasswordN

[AuthName]
(message goes here)

The list of approved users can optionally be redirected to one or several other files.

If the list of approved users is put in another file, be aware that this file can be accessed and read
from the network.

In the following example, the list of approved users will be loaded from here.cfg and too.cfg.

[File path]
\i\put\some\over\here.cfg
\i\actually\put\some\of\it\here\too.cfg

[AuthType]
Basic

[AuthName]
Howdy. Password, please.

The field “AuthType” is used to identify the authentication scheme.

Value Description
Basic Web authentication method using plaintext passwords.
Digest More secure method using challenge-response authentication. Used as default if no [Auth-

type] field is specified.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

E-mail Client 32 (188)

7 E-mail Client
7.1 General Information

The built-in e-mail client allows the application to send e-mail messages through an SMTP-serv-
er. Messages can either be specified directly in the SMTP Client Object (04h), or retrieved from
the file system. The latter may contain SSI, however note that for technical reasons, certain
commands cannot be used (specified separately for each SSI command).

The client supports authentication using the ‘LOGIN’ method. Account settings etc. are stored
in the Network Configuration Object (04h).

7.2 How to Send E-mail Messages
To be able to send e-mail messages, the SMTP-account settings must be specified.

This includes:

• A valid SMTP-server address

• A valid username

• A valid password

To send an e-mail message, perform the following steps:

1. Create a new e-mail instance using the Create command (03h)

2. Specify the sender, recipient, topic and message body in the e-mail instance

3. Issue the Send Instance Email command (10h) towards the e-mail instance

4. Optionally, delete the e-mail instance using the Delete command (04h)

Sending a message based on a file in the file system is achieved using the Send Email from File
command. This command is described in the SMTP Client Object (04h).

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 33 (188)

8 Server Side Include (SSI)
8.1 General Information

Server Side Include functionality, or SSI, allows data from files and objects to be represented on
web pages and in e-mail messages.

SSI are special commands embedded within the source document. When the Anybus Com-
pactCom module encounters such a command, it will execute it, and replace it with the result (if
applicable).

By default, only files with the extension ‘shtm’ are scanned for SSI.

8.2 Include File
This function includes the contents of a file. The content is scanned for SSI.

This function cannot be used in e-mail messages.

Syntax:

<?--#include file="filename"-->

filename: Source file

Scenario Default Output
Success (contents of file)

8.3 Command Functions
8.3.1 General Information

Command functions executes commands and includes the result.

General Syntax
<?--#exec cmd_argument='command'-->

command: Command function, see below

“command” is limited to a maximum of 500 characters.

Command Functions
Command Valid for E-mail Messages
GetConfigItem() Yes
SetConfigItem() No
SsiOutput() Yes
DisplayRemoteUser No
ChangeLanguage() No
IncludeFile() Yes
SaveDataToFile() No

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 34 (188)

Command Valid for E-mail Messages
printf() Yes
scanf() No

8.3.2 GetConfigItem()
This command returns specific information from a file in the file system.

File Format
The source file must have the following format:

[key1]
value1

[key2]
value2
...
[keyN]
valueN

Syntax:
<?--exec cmd_argument='GetConfigItem("filename", "key"[,"separator"])'-->

filename: Source file to read from
key: Source [key] in file.
separator: Optional; specifies line separation characters (e.g. “
”).

(default is CRLF).

Default Output
Scenario Default Output
Success (value of specified key)

Authentication Error “Authentication error”
File open error “Failed to open file ‘filename’”
Key not found “Tag (key) not found”

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 35 (188)

Example
The following SSI...

<?--exec cmd_argument='GetConfigItem("\example.cnf", "B")'-->

... in combination with the following file (‘\example.cnf’)...

[A]
First
[B]
Second
[C]
Third

... returns the string ‘Third’.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 36 (188)

8.3.3 SetConfigItem()
This function stores an HTML-form as a file in the file system.

This function cannot be used in e-mail messages.

File Format
Each form object is stored as a [tag], followed by the actual value.

[form object name 1]
form object value 1

[form object name 2]
form object value 2

[form object name 3]
form object value 3

...
[form object name N]
form object value N

Form objects with names starting with underscore will not be stored.

Syntax:
<?--exec cmd_argument='SetConfigItem("filename"[, Overwrite])'-->

filename: Destination file. If the specified file does not exist, it will be created (provided that the
path is valid).

Overwrite: Optional; forces the module to create a new file each time the command is issued.
The default behavior is to modify the existing file.

Default Output
Scenario Default Output
Success “Configuration stored to‘filename’”
Authentication Error “Authentication error”
File open error “Failed to open file ‘filename’”
File write error “Could not store configuration to ‘filename’”

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 37 (188)

Example
The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SetConfigItem command.

<HTML>
<HEAD><TITLE>SetConfigItem Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SetConfigItem("\food.txt")'-->

<FORM action="test.shtm">
<P>

<LABEL for="Name">Name: </LABEL>

<INPUT type="text" name="Name">

<LABEL for="_Age">Age: </LABEL>

<INPUT type="text" name="_Age">

<LABEL for="Food">Food: </LABEL>

<INPUT type="radio" name="Food" value="Cheese"> Cheese

<INPUT type="radio" name="Food" value="Sausage"> Sausage

<LABEL for="Drink">Drink: </LABEL>

<INPUT type="radio" name="Drink" value="Wine"> Wine

<INPUT type="radio" name="Drink" value="Beer"> Beer

<INPUT type="submit" name="_submit">
<INPUT type="reset" name="_reset">

</P>
</FORM>

</BODY>
</HTML>

The resulting file (‘\food.txt’) may look somewhat as follows:

[Name]
Cliff Barnes

[Food]
Cheese

[Drink]
Beer

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 38 (188)

8.3.4 SsiOutput()
This command temporarily modifies the SSI output of the following command function.

Syntax:
<?--#exec cmd_argument='SsiOutput("success", "failure")'-->

success: String to use in case of success
failure: String to use in case of failure

Default Output
(this command produces no output on its own)

Example
The following example illustrates how to use this command.

<?--#exec cmd_argument='SsiOutput ("Parameter stored", "Error")'-->
<?--#exec cmd_argument='SetConfigItem("File.cfg", Overwrite)'-->

See also...

• SSI Output Configuration, p. 52

8.3.5 DisplayRemoteUser
This command stores returns the username on an authentication session.

This command cannot be used in e-mail messages.

Syntax:
<?--#exec cmd_argument='DisplayRemoteUser'-->

Default Output
Scenario Default Output
Success (current user)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 39 (188)

8.3.6 ChangeLanguage()
This command changes the language setting based on an HTML form object.

This function cannot be used in e-mail messages.

Syntax:
<?--#exec cmd_argument='ChangeLanguage("source")'-->

source: Name of form object which contains the new language setting.

The passed value must be a single digit as follows:

Form value Language
“0” English
“1” German
“2” Spanish
“3” Italian
“4” French

Default Output
Scenario Default Output
Success “Language changed”
Error “Failed to change language”

Example
The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the ChangeLanguage() command.

<HTML>
<HEAD><TITLE>ChangeLanguage Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='ChangeLanguage("lang")'-->

<FORM action="test.shtm">
<P>

<LABEL for="lang">Language(0-4): </LABEL>

<INPUT type="text" name="lang">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 40 (188)

8.3.7 IncludeFile()
This command includes the content of a file. Note that the content is not scanned for SSI.

Syntax:
<?--#exec cmd_argument='IncludeFile("filename" [, separator])'-->

filename: Source file
separator: Optional; specifies line separation characters (e.g. “
”).

Default Output
Scenario Default Output
Success (file contents)

Authentication Error “Authentication error”
File Open Error “Failed to open file ‘filename’”

Example
The following example demonstrates how to use this function.

<HTML>
<HEAD><TITLE>IncludeFile Test</TITLE></HEAD>
<BODY>

<H1> Contents of ‘info.txt’:</H1>
<P>

<?--#exec cmd_argument='IncludeFile("info.txt")'-->.
</P>

</BODY>
</HTML>

Contents of ‘info.txt’:

Neque porro quisquam est qui dolorem ipsum quia dolor sit
amet,consectetur, adipisci velit...

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 41 (188)

When viewed in a browser, the resulting page should look somewhat as follows:

Fig. 6

See also...

• Include File, p. 33

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 42 (188)

8.3.8 SaveDataToFile()
This command stores data from an HTML form as a file in the file system. Content from the dif-
ferent form objects are separated by a blank line (2*CRLF).

This function cannot be used in e-mail messages.

Syntax:
<?--#exec cmd_argument='SaveDataToFile("filename" [, "source"],
Overwrite|Append)'-->

filename Destination file. If the specified file does not exist, it will be created (provided that the
path is valid).

source: Optional; by specifying a form object, only data from that particular form object will be
stored. Default behavior is to store data from all form objects except the ones where
the name starts with underscore.

Overwrite|Append Specifies whether to overwrite or append data to existing files.

Default Output
Scenario Default Output
Success “Configuration stored to ‘filename’”
Authentication Error “Authentication error”
File Write Error “Could not store configuration to ‘filename’”

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 43 (188)

Example
The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SaveDataToFile command.

<HTML>
<HEAD><TITLE>SaveDataToFile Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SaveDataToFile("\stuff.txt", “Meat”, Overwrite)'-->

<FORM action="test.shtm">
<P>

<LABEL for="Fruit">Fruit: </LABEL>

<INPUT type="text" name="Fruit">

<LABEL for="Meat">Meat: </LABEL>

<INPUT type="text" name="Meat">

<LABEL for="Meat">Bread: </LABEL>

<INPUT type="text" name="Bread">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

The resulting file (\stuff.txt) will contain the value specified for the form object called “Meat”.

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 44 (188)

8.3.9 printf()
This function returns a formatted string which may contain data from the Anybus CompactCom
module and/or application. The formatting syntax used is similar to that of the standard C-func-
tion printf().

The function accepts a template string containing zero or more formatting tags, followed by a
number of arguments. Each formatting tag corresponds to a single argument, and determines
how that argument shall be converted to human readable form.

Syntax:
<?--#exec cmd_argument='printf("template" [, argument1, ..., argumentN])'-->

template: Template which determines how the arguments shall be represented. May contain any
number of formatting tags which are substituted by subsequent arguments and format-
ted as requested. The number of format tags must match the number of arguments; if
not, the result is undefined.
See section “Formatting Tags” below for more information.

argument: Source arguments; optional parameters which specify the actual source of the data
that shall be inserted in the template string. The number of arguments must match the
number of formatting tags; if not, the result is undefined.
At the time of writing, the only allowed argument is ABCCMessage().
See also...

• ABCCMessage(), p. 48

Default Output
Scenario Default Output
Success (printf() result)
ABCCMessage error ABCCMessage error string (Errors, p. 51)

Example
See ..

• ABCCMessage(), p. 48

• Example (Get_Attribute):, p. 50

Formatting Tags
Formatting tags are written as follows:

%[Flags][Width][.Precision][Modifier]type

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 45 (188)

• Type (Required)

The Type-character is required and determines the basic representation as follows:

Type
Character

Representation Example

c Single character b
d, i Signed decimal integer. 565
e, E Floating-point number in exponential notation. 5.6538e2
f Floating-point number in normal, fixed-point notation. 565.38
g, G %e or %E is used if the exponent is less than -4 or greater

than or equal to the precision; otherwise %f is used. Trailing
zeroes/decimal point are not printed.

565.38

o Unsigned octal notation 1065
s String of characters Text
u Unsigned decimal integer 4242
x, X Hexadecimal integer 4e7f
% Literal %; no assignment is made %

• Flags (Optional)

Flag
Character

Meaning

- Left-justify the result within the give width (default is right justification)
+ Always include a + or - to indicate whether the number is positive or negative
(space) If the number does not start with a + or -, prefix it with a space character instead.
0 (zero) Pad the field with zeroes instead of spaces
For %e, %E, and %f, forces the number to include a decimal point, even if no digits follow.

For %x and %X, prefixes 0x or 0X, respectively.

• Width (Optional)

Width Meaning
number Specifies the minimum number of characters to be printed.

If the value to be printed is shorter than this number, the result is padded to make up the
field width. The result is never truncated even if the result is larger.

• Precision (Optional)

The exact meaning of this field depends on the type character:

Type
Character

Meaning

d, i, o, u, x, X Specifies the minimum no. of decimal digits to be printed. If the value to be printed is
shorter than this number, the result is padded with space. Note that the result is never
truncated, even if the result is larger.

e, E, f Specifies the no. of digits to be printed after the decimal point (default is 6).
g, G Specifies the max. no. of significant numbers to be printed.
s Specifies the max. no. of characters to be printed
c (no effect)

• Modifier

Modifier
Character

Meaning

hh Argument is interpreted as SINT8 or UINT8
h Argument is interpreted as SINT16 or UINT16
L Argument is interpreted as SINT32 or UINT32

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 46 (188)

8.3.10 scanf()
This function is very similar to the printf() function described earlier, except that it is used for in-
put rather than output. The function reads a string passed from an HTML form object, parses
the string as specified by a template string, and sends the resulting data to the specified argu-
ment. The formatting syntax used is similar to that of the standard C-function scanf().

The function accepts a source, a template string containing zero or more formatting tags, fol-
lowed by a number of arguments. Each argument corresponds to a formatting tag, which deter-
mines how the data read from the HTML form shall be interpreted prior sending it to the
destination argument.

This command cannot be used in e-mail messages.

Syntax:
<?--#exec cmd_argument='scanf("source", "template" [,

argument1, ..., argumentN])'-->

source Name of the HTML form object from which the string shall be extracted.
template: Template which specifies how to parse and interpret the data. May contain any number

of formatting tags which determine the conversion prior to sending the data to subse-
quent arguments. The number of formatting tags must match the number of argu-
ments; if not, the result is undefined.
See section “Formatting Tags” below for more information.

argument: Destination argument(s) specifying where to send the interpreted data. The number of
arguments must match the number of formatting tags; if not, the result is undefined.
At the time of writing, the only allowed argument is ABCCMessage().
See also...

• ABCCMessage(), p. 48

Default Output
Scenario Default Output
Success “Success”
Parsing error “Incorrect data format”
Too much data for argument “Too much data”
ABCCMessage error ABCCMessage error string (Errors, p. 51)

Example
See also...

ABCCMessage(), p. 48

Example (Set_Attribute):, p. 50

Formatting Tags
Formatting tags are written as follows:

%[*][Width][Modifier]type

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 47 (188)

• Type (Required)

The Type-character is required and determines the basic representation as follows:

Type Input Argument Data Type
c Single character CHAR
d Accepts a signed decimal integer SINT8

SINT16
SINT32

i Accepts a signed or unsigned decimal integer. May be given
as decimal, hexadecimal or octal, determined by the initial
characters of the input data:
Initial Characters: Format:
0x Hexadecimal
0: Octal
1... 9: Decimal

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

u Accepts an unsigned decimal integer. UINT8
UINT16
UINT32

o Accepts an optionally signed octal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

x, X Accepts an optionally signed hexadecimal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

e, E,
f,
g, G

Accepts an optionally signed floating point number. The input
format for floating-point numbers is a string of digits, with
some optional characteristics:

– It can be a signed value

– It can be an exponential value, containing a decimal ra-
tional number followed by an exponent field, which con-
sists of an ‘E’ or an ‘e’ followed by an integer.

FLOAT

n Consumes no input; the corresponding argument is an integer
into which scanf writes the number of characters read from
the object input.

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

s Accepts a sequence of nonwhitespace characters STRING
[scanset] Accepts a sequence of nonwhitespace characters from a set

of expected bytes specified by the scanlist (e.g
‘[0123456789ABCDEF]’)
A literal ‘]’ character can be specified as the first character of
the set. A caret character (^) immediately following the initial
‘[’ inverts the scanlist, i.e. allows all characters except the
ones that are listed.

STRING

% Accepts a single %input at this point; no assignment or con-
version is done. The complete conversion specification should
be %%.

-

• * (Optional)

Data is read but ignored. It is not assigned to the corresponding argument.

• Width (Optional)

Specifies the maximum number of characters to be read

• Modifier (Optional)

Specifies a different data size.

Modifier Meaning
h SINT8, SINT16, UINT8 or UINT16
l SINT32 or UINT32

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 48 (188)

8.4 Argument Functions
8.4.1 General Information

Argument functions are supplied as parameters to certain command functions.

General Syntax:
(Syntax depends on context)

Argument Functions:
Function Description
ABCCMessage() -

8.4.2 ABCCMessage()
This function issues an object request towards an object in the module or in the host application.

Syntax
ABCCMessage(object, instance, command, ce0, ce1,

msgdata, c_type, r_type)

object Specifies the Destination Object
instance Specifies the Destination Instance
command Specifies the Command Number
ce0 Specifies CmdExt[0] for the command message
ce1 Specifies CmdExt[1] for the command message
msgdata Specifies the actual contents of the MsgData[] subfield in the command

• Data can be supplied in direct form (format depends on c_type)

• The keyword “ARG” is used when data is supplied by the parent command (e.g.
scanf()).

c_type: Specifies the data type in the command (msgdata), see below.
r_type: Specifies the data type in the response (msgdata), see below.

Numeric input can be supplied in the following formats:

Decimal (e.g. 50) (no prefix)
Octal (e.g. 043) Prefix 0 (zero)
Hex (e.g. 0x1f) Prefix 0x

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 49 (188)

• Command Data Types (c_type)

For types which support arrays, the number of elements can be specified using the suffix
[n], where n specifies the number of elements. Each data element must be separated by
space.

Type Supports Arrays Data format (as supplied in msgdata)
BOOL Yes 1
SINT8 Yes -25
SINT16 Yes 2345
SINT32 Yes -2569
UINT8 Yes 245
UINT16 Yes 40000
UINT32 Yes 32
CHAR Yes A
STRING No “abcde”

Note: Quotes can be included in the string if preceded by back-
slash(“\”)
Example: “We usually refer to it as \‘the Egg\’”

FLOAT Yes 5.6538e2
NONE No Command holds no data, hence no data type

• Response Data Types (r_type)

For types which support arrays, the number of elements can be specified using the suffix
[n], where n specifies the number of elements.

Type Supports Arrays Data format (as supplied in msgdata)
BOOL Yes Optionally, it is possible to exchange the BOOL data with a mes-

sage based on the value (true or false). In such case, the actual
data type returned from the function will be STRING.
Syntax: BOOL<true><false>
For arrays, the format will be BOOL[n]<true><false>.

SINT8 Yes -
SINT16 Yes -
SINT32 Yes -
UINT8 Yes This type can also be used when reading ENUM data types from

an object. In such case, the actual ENUM value will be returned.
UINT16 Yes -
UINT32 Yes -
CHAR Yes -
STRING No -
ENUM No When using this data type, the ABCCMessage() function will first

read the ENUM value. It will then issue a ‘Get Enum String’-com-
mand to retrieve the actual enumeration string. The actual data
type in the response will be STRING.

FLOAT Yes -
NONE No Response holds no data, hence no data type

It is important to note that the message will be passed transparently to the
addressed object. The SSI engine performs no checks for violations of the object
addressing scheme, e.g. a malformed Get_Attribute request which (wrongfully)
includes message data will be passed unmodified to the object, even though this is
obviously wrong. Failure to observe this may cause loss of data or other undesired
side effects.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 50 (188)

Example (Get_Attribute):
This example shows how to retrieve the IP address using printf() and ABCCMessage().

<?--#exec cmd_argument='printf("%u.%u.%u.%u",
ABCCMessage(4,3,1,5,0,0,NONE,UINT8[4]))'-->

Variable Value Comments
object 4 Network Configuration Object (04h)
instance 3 Instance #3 (IP address)
command 1 Get_attribute
ce0 5 Attribute #5
ce1 0 -
msgdata 0 -

c_type NONE Command message holds no data
r_type UINT8[4] Array of 4 unsigned 8-bit integers

Example (Set_Attribute):
This example shows how to set the IP address using scanf() and ABCCMessage(). Note the
special parameter value “ARG”, which instructs the module to use the passed form data (parsed
by scanf()).

<?--#exec cmd_argument='scanf("IP", "%u.%u.%u.%u",
ABCCMessage(4,3,2,5,0,ARG,UINT8[4],NONE))'-->

Variable Value Comments
object 4 Network Configuration Object (04h)
instance 3 Instance #3 (IP address)
command 2 Set_attribute
ce0 5 Attribute #5
ce1 0 -
msgdata ARG Use data parsed by scanf() call
c_type UINT8[4] Array of 4 unsigned 8-bit integers
r_type NONE Response message holds no data

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 51 (188)

Errors
In case an object request results in an error, the error code in the response will be evaluated
and translated to readable form as follows:

Error Code Output
0 “Unknown error”
1 “Unknown error”
2 “Invalid message format”
3 “Unsupported object”
4 “Unsupported instance”
5 “Unsupported command”
6 “Invalid CmdExt[0]”
7 “Invalid CmdExt[1]”
8 “Attribute access is not set-able”
9 “Attribute access is not get-able”
10 “Too much data in msg data field”
11 “Not enough data in msg data field”
12 “Out of range”
13 “Invalid state”
14 “Out of resources”
15 “Segmentation failure”
16 “Segmentation buffer overflow”
17... 255 “Unknown error”

See also...

SSI Output Configuration, p. 52

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Server Side Include (SSI) 52 (188)

8.5 SSI Output Configuration
Optionally, the SSI output can be permanently changed by adding the file \output.cfg.

File format:

[ABCCMessage_X]
0:“Success string”
1:“Error string 1”
2:“Error string 2”
...
16“:Error string 16”

Each error code corresponds to a dedicated output string, la-
belled from 1 to 16.
See Errors, p. 51

[GetConfigItem_X]
0: “Success string”
1:“Authentication error string”
2:“File open error string”
3:“Tag not found string”

Use “%s” to include the name of the file.

[SetConfigItem_X]
0: “Success string”
1:“Authentication error string”
2:“File open error string”
3:“File write error string”

Use “%s” to include the name of the file.

[IncludeFile_X]
0: “Success string”
1:“Authentication error string”
2:“File read error string”

Use “%s” to include the name of the file.

[scanf_X]
0: “Success string”
1:“Parsing error string”

-

[ChangeLanguage_X]
0: “Success string”
1:“Change error string”

-

All content above can be included in the file multiple times changing the value “X” in each tag
for different languages. The module will then select the correct output string based on the lan-
guage settings. If no information for the selected language is found, it will use the default SSI
output.

Value of X Language
0 English
1 German
2 Spanish
3 Italian
4 French

See also...

•

SsiOutput(), p. 38

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 53 (188)

9 JSON
9.1 General Information

JSON is an acronym for JavaScript Object Notation and an open standard format for storing
and exchanging data in an organized and intuitive way. It is used as an alternative to XML, to
transmit data objects consisting of attribute - value pairs between a server and a web applica-
tion. JavaScripts are used to create dynamic web pages to present the values.

JSON is more versatile than SSI in that you not only can change the values on a web page, but
also the size and the look of the web page dynamically. A simple example of how to create a
web page is added at the end of this chapter.

JSON requests shall be UTF-8 encoded. The module will interpret JSON requests as UTF-8 en-
coded, while all other HTTP requests will be interpreted as ISO-8859-1 encoded. All JSON re-
sponses, sent by the module, are UTF-8 encoded, while all other files sent by the web server
are encoded as stored in the file system.

9.1.1 Access
The JSON resources should be password protected. Add password protection by adding a file
called web_accs.cfg in the root directory.

9.2 JSON Objects
9.2.1 ADI
info.json

GETadi/info.json[?callback=<function>].

This object holds data common to all ADIs that are static during runtime. Optionally, a callback
may be passed to the GET-request for JSONP output.

Name Data Type Note
dataformat Number 0 = Little endian

1 = Big endian
(Affects value, min and max representations)

numadis Number Total number of ADIs
webversion Number Web/JSON API version

JSON object layout:

{
"dataformat": 0,
"numadis": 123,
"webversion": 1

}

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 54 (188)

data.json
GETadi/data.json?offset=<offset>&count=<count>[&callback=<function>].

This object call fetches values for up to <count> ADIs, starting from <offset> in a list sorted by
ADI order number. The values may change at any time during runtime. Optionally, a callback
may be passed to the GET-request for JSONP output.

JSON object layout:

[
"FF",
"A201",
"01FAC105"

]

metadata.json
GETadi/metadata.json?offset=<offset>&count=<count>[&callback=<function>].

This object call fetches metadata for up to <count> ADIs, starting from <offset> in a list sorted
by ADI order number. This data is static during runtime. Optionally, a callback may be passed to
the GET-request for JSONP output.

Name Data Type Note
instance Number -
name String May be NULL if no name is present.
numelements Number -
datatype Number -

min String Minimum value. May be NULL if no minimum value is present.
max String Maximum value. May be NULL of no maximum value is present.
access Number Bit 0: Read accessBit 1: Write access

JSON object layout:

[
{

"instance": 1,
"name": "Temperature threshold",
"numelements": 1,
"datatype": 0,
"min": "00",
"max": "FF",
"access": 0x03

},
{

nine more...
}
]

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 55 (188)

enum.json
GETadi/enum.json?inst=<instance>[&value=<element>][&callback=<function>].

This object call fetches enum strings for the instance <instance>. If an <element> is specified,
only the enum string for that value is returned. If no enum strings are available, an empty list is
returned. Optionally, a callback may be passed to the GET-request for JSONP output.

Name Data Type Note
string String -

value Number -

JSON object layout:

[
{

"string": "String for value 1",
......"value": 1

},
{

"string": "String for value 1",
......"value": 1
...},

...
]

update.json
POSTadi/update.json - form data:

inst=<instance>&value=<data>[&elem=<element>][&callback=<function>].

Updates the value of an ADI for the specified ADI instance <instance>. The value, <data>, shall
be hex formatted (see Hex Format Explained, p. 61 for more information). If <element> is speci-
fied, only the value of the specified element is updated. In this case, <data> shall only update
that single element value. When <element> is not specified, <data> shall represent the entire
array value. Optionally, a callback may be passed to the request for JSONP output

Name Data Type Note
result Number 0 = success

POSTadi/update.json - form data: inst=15&value=FF01

{
"result" : 0

}

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 56 (188)

9.2.2 Module
info.json

GET module/info.json

Name Data Type Note
modulename String -

serial String 32 bit hex ASCII
fwver Array of Number (major, minor, build)
uptime Array of Number [high, low] milliseconds (ms)
cpuload Number CPU load in %

JSON object layout:

{
"modulename": "ABCC M40",
"serial": "ABCDEF00",
"fwver": [1, 5, 0],
"uptime": [5, 123456],
"cpuload": 55

}

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 57 (188)

9.2.3 Network
ethstatus.json

GET network/ethstatus.json.

Name Data Type Note
mac String 6 byte hex
comm1 Object See object definition in the table below
comm2 Object See object definition in the table below

Comm Object Definition:

Name Data Type Note
link Number 0: No link

1: Link
speed Number 0: 10 Mbit

1: 100 Mbit
duplex Number 0: Half

1: Full

JSON object layout:

{
"mac": "003011FF0201",
"comm1": {

"link": 1,
"speed": 1,
"duplex": 1

},
"comm2": {

"link": 1,
"speed": 1,
"duplex": 1

...}
}

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 58 (188)

ipstatus.json & ipconf.json
These two object share the same data format. The object ipconf.json returns the configured IP
settings, and ipstatus.json returns the actual values that are currently used. ipconf.json can also
be used to alter the IP settings.

GET network/ipstatus.json, or GET network/ipconf.json.

Name Data Type Note
dhcp Number -

addr String -

subnet String -

gateway String -

dns1 String -

dns2 String -

hostname String -

domainname String -

{
"dhcp": 0,
"addr": "192.168.0.55",
"subnet": "255.255.255.0",
"gateway": "192.168.0.1",
"dns1": "10.10.55.1",
"dns2": "10.10.55.2"
"hostname": "<hostname>",
"domainname": "hms.se"

}

To change IP settings, use network/ipconf.json. It accepts any number of arguments from the
list above. Values should be in the same format.

Example:

GET ipconf.json?dhcp=0&addr=10.11.32.2&hostname=abcc123&domainname=hms.se

ethconf.json
GET network/ethconf.json

Name Data Type Note
comm1 Number -
comm2 Number -

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 59 (188)

ifcounters.json
GET network/ifcounters.json?port=<port>. Valid values for the argument <port> are 0, 1, and 2.

• Valid values for the argument <port> are 0, 1, and 2.

• Port number 2 option is only valid if two Ethernet ports are activated in the module.

• Port number 0 option refers to the internal port (CPU port).

Name Data Type Note
inoctets Number IN: bytes
inucast Number IN: unicast packets
innucast Number IN: broadcast and multicast packets
indiscards Number IN: discarded packets
inerrors Number IN: errors
inunknown Number IN: unsupported protocol type
outoctets Number OUT: bytes
outucast Number OUT: unicast packets
outnucast Number OUT: broadcast and multicast packets
outdiscards Number OUT: discarded packets
outerrors Number OUT: errors

mediacounters.json
GET network/mediacounters.json?port=<port>. The argument <port> is either 1 or 2.

Name Data Type Note
align Number Frames received that are not an integral number of octets

in length
fcs Number Frames received that do not pass the FCS check
singlecoll Number Successfully transmitted frames which experienced ex-

actly one collision
multicoll Number Successfully transmitted frames which experienced more

than one collision
latecoll Number Number of collisions detected later than 512 bit times into

the transmission of a packet
excesscoll Number Frames for which transmissions fail due to excessive

collisions
sqetest Number Number of times SQE test error is generated

deferredtrans Number Frames for which the first transmission attempt is delayed
because the medium is busy

macrecerr Number Frames for which reception fails due to an internal MAC
sublayer receive error

mactranserr Number Frames for which transmission fails due to an internal
MAC sublayer transmit error

cserr Number Times that the carrier sense was lost or never asserted
when attempting to transmit a frame

toolong Number Frames received that exceed the maximum permitted
frame size

tooshort Number Frames received that are shorter than the lowest permit-
ted frame size

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 60 (188)

nwstats.json
GET network/nwstats.json.

This object lists available statistics data. The data available depends on the product.

Example output:

[]
or
[{ "identifier": "eip", "title": "EtherNet/IP Statistics" }]
or
[

{ "identifier": "bacnet", "title": "BACnet/IP Statistics" },
{ "identifier": "bacnetae", "title": "BACnet Alarm and Event" },
{ "identifier": "bacnetapl", "title": "BACnet APL Statistics" }

]

Get network specific statistics:

GET network/nwstats.json?get=<ID>. <ID> is an “identifier” value returned from the previous

command (“eip”, for example)

[
{ "name": "Established Class1 Connections", "value": 0 },
{ "name": "Established Class3 Connections", "value": 1 }

]

9.2.4 Services
smtp.json

GETservices/smtp.json.

Password is not returned when retrieving the settings.

Name

Data Type

Note

server

String

-

user

String

-

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

JSON 61 (188)

9.2.5 Hex Format Explained
The metadata max and min fields and the ADI values are ABP data encoded in a hex format. If
the data type is an integer, the endianness used is determined by the data format field found in
adi/info.json.

Examples:

The value 5 encoded as a UINT16, with data format = 0 (little endian):

0500

The character array “ABC” encoded as CHAR[3] (data format is not relevant for CHAR):

414243

9.3 Example
This example shows how to create a web page that fetches Module Name and CPU load from
the module and presents it on the web page. The file, containing this code, has to be stored in
the built-in file system, and the result can be seen in a common browser.

<html>
<head>

<title>Anybus CompactCom</title>

<!-- Imported libs -->
<script type="text/javascript" src="vfs/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="vfs/js/tmpl.js"></script>

</head>
<body>

<div id="info-content"></div>
<script type="text/x-tmpl" id="tmpl-info">

From info.json

Module name:
{%=o.modulename%}

CPU Load:
{%=o.cpuload%}%

</script>
<script type="text/javascript">

$.getJSON("/module/info.json", null, function(data){
$("#info-content").html(tmpl("tmpl-info", data));

});
</script>

</body>
</html>

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 62 (188)

10 CIP Objects
10.1 General Information

This chapter specifies the CIP-object implementation in the module. These objects can be ac-
cessed from the network, but not directly by the host application.

Mandatory objects

• Identity Object (01h), p. 64

• Message Router (02h), p. 67

• Assembly Object (04h), p. 68

• Connection Manager (06h), p. 71

• QoS Object (48h), p. 79

• TCP/IP Interface Object (F5h), p. 88

• Ethernet Link Object (F6h), p. 92

CIP Energy Objects:

• Base Energy Object (4Eh), p. 80

• Power Management Object (53h), p. 82

Optional Objects:

• Port Object (F4h), p. 86 (Optional)

• Parameter Object (0Fh), p. 75

• DLR Object (47h), p. 78

Vendor Specific Objects:

• ADI Object (A2h), p. 84

It is possible to implement additional CIP-objects in the host application using the CIP forward-
ing functionality, see EtherNet/IP Host Object (F8h), p. 150 and commend details for Process_
CIP_Object_Request.

Unconnected CIP routing is supported, which means that a message can be sent to a device
without first setting up a connection.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 63 (188)

10.2 Translation of Status Codes
If an error occurs when an object is requested from the application, an error code is returned.
These Anybus CompactCom error codes are translated to CIP status codes according to the ta-
ble below.

Anybus CompactCom 40 Error Code CIP Status Code
Value Error Value Status
00h Reserved 1Eh Embedded service error
01h Reserved 1Eh Embedded service error
02h Invalid message format 1Eh Embedded service error
03h Unsupported object 05h Path destination unknown
04h Unsupported instance 05h Path destination unknown
05h Unsupported Command 08h Service not supported
06h Invalid CmdExt(0) 14h Depending on Anybus CompactCom Service return-

ing this reply, e.g. attribute not supported
07h Invalid CmdExt(1) - Depending on Anybus CompactCom Service return-

ing this reply
08h Attribute not settable 0Eh Attribute not settable
09h Attribute not gettable 2Ch Attribute not gettable
0Ah Too Much Data 15h Too much data
0Bh Not Enough Data 13h Not enough data
0Ch Out of range 09h Invalid attribute value
0Dh Invalid state 0Ch Object state conflict
0Eh Out of resources 02h Resource unavailable
0Fh Segmentation failure 1Eh Embedded service error
10h Segmentation buffer overflow 23h Buffer overflow
11h Value too high 09h Invalid attribute value
12h Value too low 09h Invalid attribute value
13h Attribute controlled 0Fh A permission/privilege check failed
14h Message channel too small 11h Reply data too large
FFh Object Specific Error 1Fh Vendor specific error. No additional error codes will

be sent on EtherNet/IP
Other - 1Eh Embedded service error

For further information about the Anybus CompactCom error codes, please consult the Anybus
CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 64 (188)

10.3 Identity Object (01h)
Category
Extended

Object Description
The Identity Object provides identification of and general information about the module.

The object supports multiple instances. Instance 1, which is the only mandatory instance, describes the whole
product. It is used by applications to determine what nodes are on the network and to match an EDS file with
a product on the network. The other (optional) instances describe different parts of the product, e.g. the
software.

If modular device functionality is enabled, a list of the modules in the slots can be retrieved and made avail-
able to the network master by sending a get request to class attribute 100.

Instance attributes 1 - 7 can be customized by implementing the EtherNet/IP Host Object.

Additional identity instances can be registered by implementing the CIP Identity Host Object (host application
object).

See also

• EtherNet/IP Host Object (F8h), p. 150

• CIP Identity Host Object (EDh), p. 147

Supported Services

Class: Get_Attribute_Single

Get_Attributes_All

Instance: Get_Attribute_Single

Set_Attribute_Single

Get_Attributes_All

Reset

Class Attributes
Name Access Type Value
1 Revision Get UINT 0001h (Object revision)
2 Max

instance
Get UINT Maximum instance number

3 Number of
instances

Get UINT Number of instances

100 Module ID
List

Get Array of
UINT32

If modular device functionality is enabled, a request to this attribute will
generate a Get_List request to the Modular Device Object in the host
application.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 65 (188)

Instance Attributes
Attributes #1–4 and #6–7 can be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 150

Name Access Type Value/Description
1 Vendor ID Get UINT 005Ah (HMS Industrial Networks AB)
2 Device Type Get UINT 002Bh (Generic Device)
3 Product

Code
Get UINT 0037h (Anybus CompactCom 40 EtherNet/IP)

4 Revision Get Struct of:
USINT
USINT

Major and minor firmware revision

5 Status Get WORD See Device Status table below
6 Serial

Number
Get UDINT Unique serial number (assigned by HMS)

7 Product
Name

Get SHORT_
STRING

“Anybus CompactCom 40 EtherNet/IP (TM)”

11 Active
language

Set Struct of:
USINT
USINT
USINT

Requests sent to this instance are forwarded to the Application Object. If
the request is accepted, the module will update the language accordingly.

12 Supported
Language
List

Get Array of:
Struct of:
USINT
USINT
USINT

List of languages supported by the host application. The list is read from
the Application Object and translated to CIP standard. By default the only
supported language is English. The application has to implement the cor-
responding attributes in the application object to enable more languages.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 66 (188)

Device Status
bit(s) Name
0 Module Owned
1 (reserved)
2 Configured

This bit shows if the product has other settings than "out-of-box". The value is set to true if the configured attribute
in the Application Object is set and/or the module’s NV storage is changed from default.

3 (reserved)
4... 7 Extended Device Status:

Value: Meaning:
0000b Unknown
0010b Faulted I/O Connection
0011b No I/O connection established
0100b Non volatile configuration bad
0101b Major fault
0110b Connection in Run mode
0111b Connection in Idle mode
(other) (reserved)

8 Set for minor recoverable faults. See Diagnostic Object (02h), p. 99
9 Set for minor unrecoverable faults. See Diagnostic Object (02h), p. 99
10 Set for major recoverable faults. See Diagnostic Object (02h), p. 99
11 Set for major unrecoverable faults. See Diagnostic Object (02h), p. 99
12... 15 (reserved)

Service Details: Reset

This service is not supported if safety is enabled in the Functional Safety Object (E8h).

The module forwards reset requests from the network to the host application. For more information about net-
work reset handling, consult the general Anybus CompactCom 40 Software Design Guide.

There are two types of network reset requests on EtherNet/IP:

Type 0: Power Cycling
Reset

This service emulates a power cycling of the module, and corresponds to Anybus reset type 0
(Power cycling). For further information, consult the general Anybus CompactCom 40
Software Design Guide.

Type 1: Out of box reset This service sets a “out of box” configuration and performs a reset, and corresponds to
Anybus reset type 2 (Power cycling + factory default). For further information, consult the
general Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 67 (188)

10.4 Message Router (02h)
Category
Extended

Object Description
The Message Router Object provides a messaging connection point through which a client may address a
service to any object class or instance residing in the physical module.

In the Anybus CompactCom module it is used internally to direct object requests.

Supported Services

Class: -

Instance: -

Class Attributes
-

Instance Attributes
-

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 68 (188)

10.5 Assembly Object (04h)
Category
Extended

Object Description
The Assembly object uses static assemblies and holds the Process Data sent/received by the host applica-
tion. It allows data to and from each object to be sent or received over a single connection. The default as-
sembly instance IDs used are in the vendor specific range.

It is possible for the application to create and support up to six consuming and six producing instances if the
Assembly Mapping Object is implemented.

The terms “input” and “output” are defined from the network’s point of view. An input will produce data on the
network and an output will consume data from the network.

See also

• EtherNet/IP Host Object (F8h), p. 150

• Assembly Mapping Object (see Anybus CompactCom 40 Software Design Guide)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value
1 Revision Get UINT 0002h (Object revision)
2 Max

instance
Get UINT Maximum instance number

Instance 03h Attributes (Heartbeat, Input-Only)
This instance is used as heartbeat for Input-Only connections. The data size of the Heartbeat instance in the
Forward_Open-request should be 0 bytes, however other values are also permitted.

Name Access Type Value/Description
3 Data Set N/A - (The data size of this attribute is zero)
4 Size Get UINT 0 (Number of bytes in attribute 3)

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 69 (188)

Instance 04h Attributes (Heartbeat, Listen-Only)
This instance is used as heartbeat for listen-only connections. The data size of the Heartbeat instance in the
Forward_Open-request should be 0 bytes, however other values are also permitted.

Name Access Type Value/Description
3 Data Set N/A - (The data size of this attribute is zero)
4 Size Get UINT 0 (Number of bytes in attribute 3)

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Instance 05h Attributes (Configuration Data)
Configuration Data that is sent through the service Forward_Open will be written to this instance.

Name Access Type Value/Description
3 Data Set N/A - (Configuration data written to the application when the forward open

command has the configuration data included)- (The data size of this at-
tribute is zero)

4 Size Get UINT 0 (Number of bytes in attribute 3)

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

See command details for Set_Configuration_Data nad Get_Contfiguration_Data in the EtherNet/IP Host Ob-
ject (F8h), p. 150.

Instance 06h Attributes (Heartbeat, Input-Only Extended)
This instance is used as heartbeat for input-only extended connections, and does not carry any attributes.
The state of connections made to this instance does not affect the state of the Anybus CompactCom module,
i.e. if the connection times out, the module does not switch to the Error state. The data size of the Heartbeat
instance in the Forward_Open-request should be 0 bytes, however other values are also permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description
3 Data Set N/A - (The data size of this attribute is zero)
4 Size Get UINT 0 (Number of bytes in attribute 3)

Instance 07h Attributes (Heartbeat, Listen-Only Extended)
This instance is used as heartbeat for listen-only extended connections, and does not carry any attributes.
The state of connections made to this instance does not affect the state of the Anybus CompactCom 40 mod-
ule, i.e. if the connection times out, the module does not switch to the Error state. The data size of the Heart-
beat instance in the Forward_Open-request should be 0 bytes, however other values are also permitted.

The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description
3 Data Set N/A - (The data size of this attribute is zero)
4 Size Get UINT 0 (Number of bytes in attribute 3)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 70 (188)

Instance 64h Attributes (Producing Instance)
The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description
3 Produced

Data
Get Array of BYTE This data corresponds to the Write Process Data.

4 Size Get UINT Number of bytes in attribute 3

See also...

Network Data Exchange, p. 14

EtherNet/IP Host Object (F8h), p. 150(Instance attribute #7)

Instance 96h Attributes (Consuming Instance)
The instance number for this instance can be changed by implementing the corresponding attribute in the
EtherNet/IP Host Object.

Name Access Type Value/Description
3 Produced

Data
Set Array of BYTE This data corresponds to the Read Process Data.

4 Size Get UINT Number of bytes in attribute 3

See also...

Network Data Exchange, p. 14

EtherNet/IP Host Object (F8h), p. 150 (Instance attribute #7)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 71 (188)

10.6 Connection Manager (06h)
Category
Extended

Object Description
This object is used for connection and connectionless communications, including establishing connections
across multiple subnets.

Supported Services

Class: -

Instance: Get Attribute All

Get Attribute Single

Set Attribute Single

Large_Forward_Open

Forward_Open

Forward_Close

Unconnected Send (when unconnected routing is enabled)

Class Attributes
(No supported class attributes)

Instance Attributes
Name Access Type Value/Description
1 Open

Requests
Set UINT Number of Forward Open service requests received.

2 Open Format
Rejects

Set UINT Number of Forward Open service requests which were rejected due to
bad format.

3 Open Re-
source
Rejects

Set UINT Number of Forward Open service requests which were rejected due to
lack of resources.

4 Open Other
Rejects

Set UINT Number of Forward Open service requests which were rejected for rea-
sons other than bad format or lack of resources.

5 Close
Requests

Set UINT Number of Forward Close service requests received.

6 Close For-
mat Rejects

Set UINT Number of Forward Close service requests which were rejected due to
bad format.

7 Close Other
Rejects

Set UINT Number of Forward Close service requests which were rejected for rea-
sons other than bad format.

8 Connection
Timeouts

Set UINT Total number of connection timeouts that have occurred in connections
controlled by this Connection Manager.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 72 (188)

Class 0 Connection Details
General
Class 0 connections are only supported for safety connections. The Anybus CompactCom device will act as
a transparent bridge for safety connections, meaning that open and close requests for safety connections
and safety I/O data will be forwarded to the safety module. Class 0 connections use UDP transport.

Total number of supported
class 0 connections:

2

Max input connection size: 241 bytes

(Including the Mode Byte, Actual, Complement and Time stamp sections.)

Max output connection
size:

239 bytes

(Including the Mode Byte, Actual, Complement and Time stamp sections.)

Supported RPI (Requested
Packet Interval):

1... 20000 ms

Class 1 Connection Details
General
Class 1 connections are used to transfer I/O data, and can be established to instances in the Assembly Ob-
ject. Each Class 1 connection will establish two data transports; one consuming and one producing. The
heartbeat instances can be used for connections that shall only access inputs. Class 1 connections use UDP
transport. Null forward open is supported.

Total number of supported
class 1 connections:

4

Max input connection size: 1448 bytes with Large_Forward_Open, 509 bytes with Forward_Open

Max output connection
size:

1448 bytes with Large_Forward_Open, 505 bytes with Forward_Open

Supported RPI (Requested
Packet Interval):

1... 3200ms

T→O Connection type: Point-to-point, Multicast, Null

O→-T Connection type: Point-to-point, Null

Supported trigger types: Cyclic, CoS (Change of State)

Supported priorities: Low, High, Scheduled, Urgent

T Target, in this case the module

O Origin, in this case the master

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 73 (188)

Connection Types
• Exclusive-Owner connection

This type of connection controls the outputs of the Anybus module and does not depend on other
connections.

Max. no. of Exclusive-Owner
connections:

1

Connection point O →T: Assembly Object, instance 96h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Input-Only connection

This type of connection is used to read data from the Anybus module without controlling the outputs. It
does not depend on other connections.

Max. no. of Input-Only
connections:

Up to 4

(Shared with Exclusive-Owner and Listen-Only connections)

Connection point O →T: Assembly Object, instance 03h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

Please not that if an Exclusive-Owner connection has been opened towards the module and times out,
the Input-Only connection times out as well. If the Exclusive-Owner connection is properly closed, the In-
put-Only connection remains unaffected.

• Input-Only Extended connection

This connections functionality is the same as the standard Input-Only connection. However when this
connection times out it does not affect the state of the application.

Connection point O →T: Assembly Object, instance 06h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Listen-Only connection

This type of connection requires another connection in order to exist. If that connection (Exclusive-Owner
or Input-Only) is closed, the Listen-Only connection will be closed as well.

Max. no. of Input-Only
connections:

Up to 4

(Shared with Exclusive-Owner and Input-Only connections)

Connection point O →T: Assembly Object, instance 04h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Listen-Only Extended connection

This connections functionality is the same as the standard Listen-Only connection. However when this
connection times out it does not affect the state of the application.

Connection point O →T: Assembly Object, instance 07h (Default)

Connection point T →O: Assembly Object, instance 64h (Default)

• Redundant-Owner connection

This connection type is not supported by the module.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 74 (188)

Class 3 Connection Details
General
Class 3 connections are used to establish connections towards the message router. Thereafter, the connec-
tion is used for explicit messaging. Class 3 connections use TCP transport.

No. of simultaneous Class 3
connections:

6

Supported RPI (Requested Packet
Interval):

1... 10000 ms

T→O Connection type: Point-to-point

O→-T Connection type: Point-to-point

Supported trigger type: Application

Supported connection size: 1448 bytes

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 75 (188)

10.7 Parameter Object (0Fh)
Category
Extended

Object Description
The Parameter Object provides an interface to the configuration data of the module. It can provide all the in-
formation necessary to define and describe each of the module configuration parameters, as well as a full de-
scription of each parameter, including minimum and maximum values and a text string describing the
parameter. Configuration tools, such as RSNetworx, can extract information about the Application Data In-
stances (ADIs) and present them with their actual name and range to the user.

Since this process may be somewhat time consuming, especially when using the serial host interface, it is
possible to disable support for this functionality in the EtherNet/IP Host Object.

Each parameter is represented by one instance. Instance numbers start at 1, and are incremented by one,
with no gaps in the list. Due to limitations imposed by the CIP standard, ADIs containing multiple elements (i.
e. arrays etc.) cannot be represented through this object. In such cases, default values will be returned.

See also

• ADI Object (A2h), p. 84 (CIP Object)

• EtherNet/IP Host Object (F8h), p. 150 (Host Application Object)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Get_Attributes_All

Get_Enum_String

Class Attributes
Name Access Type Value
1 Revision Get UINT 0001h (Object revision)
2 Max

instance
Get UINT Maximum created instance number = class attribute 3 in the Application

Data Object (see Anybus CompactCom 40 Software Design Guide)
8 Parameter

Class
Descriptor

Get WORD Default: 0000 0000 0000 1011b
Bit:
0
1
2
3

Contents:
Supports parameter instances
Supports full attributes
Must do non-volatile storage save command
Parameters are stored in non-volatile storage

9 Configura-
tion Assem-
bly Instance

Get UINT 0000h (Application does not support configuration data)
0005h (If the application supports configuration data, unless the configu-
ration instance number has been changed using attribute 15 in the Ether-
Net/IP Host Object.)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 76 (188)

Instance Attributes
Name Access Type Value/Description
1 Parameter

Value
Get/Set Specified in at-

tributes 4, 5 & 6.
Actual value of parameter
This attribute is read-only if bit 4 of Attribute #4 is true

2 Link Path
Size

Get USINT 0007h (Size of link path in bytes)

3 Link Path Get Packed EPATH 20 A2 25 nn nn 30 05h
(Path to the object from where this parameter’s value is retrieved, in this
case the ADI Object)

4 Descriptor Get WORD Bit:
0
1
2
3
4
5
6

Contents:
Supports Settable Path (N/A)
Supports Enumerated Strings
Supports Scaling (N/A)
Supports Scaling Links (N/A)
Read only Parameter
Monitor Parameter (N/A)
Supports Extended Precision Scaling (N/A)

5 Data Type Get USINT Data type code
6 Data Size Get USINT Number of bytes in parameter value
7 Parameter

Name String
Get SHORT_

STRING
Name of the parameter, truncated to 16 chars

8 Units String Get SHORT_
STRING

“” (default string)

9 Help String Get SHORT_
STRING

10 Minimum
Value

Get (Data type) Minimum value of parameter
The Data Type is defined in attribute 5.

11 Maximum
Value

Get (Data type) Maximum value of parameter
The Data Type is defined in attribute 5.

12 Default
Value

Get (Data type) Default value of parameter
The Data Type is defined in attribute 5.

13 Scaling
Multiplier

Get UINT 0001h

14 Scaling
Divisor

Get UINT

15 Scaling Base Get UINT
16 Scaling

Offset
Get INT 0000h

17 Multiplier
Link

Get UINT

18 Divisor Link Get UINT
19 Base Link Get UINT
20 Offset Link Get UINT
21 Decimal

Precision
Get USINT 00h

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 77 (188)

Default Values
Name Value Comments
1 Parameter Value 0 -
2 Link Path Size 0 Size of link path in bytes.
3 Link Path - NULL Path
4 Descriptor 0010h Read only Parameter
5 Data type C6h USINT
6 Data size 1 -
7 Parameter Name String “Reserved” -

8 Units String “” -

9 Help String “” -

10 Minimum value N/A 0
11 Maximum value N/A 0
12 Default value N/A 0
13 Scaling Multiplier N/A 1
14 Scaling Divisor N/A 1
15 Scaling Base N/A 1
16 Scaling Offset N/A 0
17 Multiplier Link N/A 0
18 Divisor Link N/A 0
19 Base Link N/A 0
20 Offset Link N/A 0
21 Decimal Precision N/A 0

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 78 (188)

10.8 DLR Object (47h)
Category
Extended

Object Description
The Device Level Ring (DLR) Object provides the status information interface for the DLR protocol. This pro-
tocol enables the use of an Ethernet ring topology, and the DLR Object provides the CIP application-level in-
terface to the protocol.

This object is not available if DLR is disabled in the EtherNet/IP Host Object, see Ethernet Host Object (F9h),
p. 159

.

Supported Services

Class: Get_Attribute_Single

Get_Attributes_All

Instance: Get_Attribute_Single

Class Attributes
Name Access Type Value
1 Revision Get UINT 0003h (Object revision)

Instance Attributes
Attributes #1–4 and #6–7 an be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 150

Name Access Type Value/Description
1 Network

Topology
Get USINT Bit:

0
1

Contents:
“Linear”
“Ring”

2 Network
Status

Get USINT Bit:
0
1
2
3
4

Contents:
“Normal” (N/A)
“Ring Fault”
“Unexpected Loop Detected”
“Partial Network Fault”
“Rapid Fault/Restore Cycle”

10 Active
Supervisor
Address

Get Struct of:
UDINT
Array of:
6 USINTs

This attribute holds the IP address (IPv4) and/or the Ethernet Mac ad-
dress of the active ring supervisor.

12 Capability
Flags

Get DWORD 82h (Beacon-based ring node, Flush_Table frame capable)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 79 (188)

10.9 QoS Object (48h)
Category
Extended

Object Description
Quality of Service (QoS) is a general term that is applied to mechanisms used to treat traffic streams with dif-
ferent relative priorities or other delivery characteristics. Standard QoS mechanisms include IEEE 802.1D/Q
(Ethernet frame priority) and Differentiated Services (DiffServ) in the TCP/IP protocol suite.

The QoS Object provides a means to configure certain QoS related behaviors in EtherNet/IP devices.

The object is required for devices that support sending EtherNet/IP messages with nonzero DiffServ code
points (DSCP), or sending EtherNet/IP messages in 802.1Q tagged frames.

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value
1 Revision Get UINT 0001h (Object revision)

Instance Attributes
Attributes #1–4 and #6–7 an be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 150

Name Access Type Value/Description
1 802.1Q Tag

Enable
Set USINT Enables or disables sending 802.1Q frames.

Bit:
0
1

Contents:
Disabled (Default)
Enabled

4 DSCP
Urgent

Set USINT CIP transport class 1 messages with priority Urgent
Default: 55

5 DSCP
Scheduled

Set USINT CIP transport class 1 messages with priority Scheduled
Default: 47

6 DSCP High Set USINT CIP transport class 1 messages with priority High
Default: 43

7 DSCP Low Set USINT CIP transport class 1 messages with priority Low
Default: 31

8 DSCP
Explicit

Set USINT CIP UCMM and CIP class 3
Default: 27

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 80 (188)

10.10 Base Energy Object (4Eh)
Category
Extended

Object Description
The Base Energy Object acts as an “Energy Supervisor” for CIP Energy implementations. It is responsible for
providing a time base for energy values, provides energy mode services, and can provide aggregation serv-
ices for aggregating energy values up through the various levels of an industrial facility. It also provides a
standard format for reporting energy metering results. The object is energy type independent and allows en-
ergy type specific data and functionality to be integrated into an energy system in a standard way. The Any-
bus CompactCom 40 EtherNet/IP supports one instance of the Base Energy Object. For instance, an electric
power monitor may count metering pulse output transitions of a separate metering device. The count of such
transitions, represented by a Base Energy Object instance, would reflect the energy consumption measured
by the separate metering device.

An instance of the Base Energy Object may exist as a stand-alone instance, or it may exist in conjunction with
an Electrical and/or Non-Electrical Energy Object instance (These objects are not implemented in the Anybus
CompactCom 40 EtherNet/IP). If an instance of any of these objects is implemented in a device, it must be
associated with a Base Energy Object instance in the device.

For this object to be able to access the network, the Energy Reporting Object (E7h) must be implemented in
the host application, see the Anybus CompactCom 40 Software Design Guide for more information.

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Class Attributes
Name Access Type Value
1 Revision Get UINT 0002h (Object revision)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 81 (188)

Instance Attributes
Attributes #1–4 and #6–7 an be customized by implementing the EtherNet/IP Host Object, see EtherNet/IP
Host Object (F8h), p. 150

Name Access Type Value/Description
1 Energy/Re-

source Type
Get UINT Type of energy managed by this instance

Always 0 (Generic)
2 Base Energy

Object
Capabilities

Get UINT Always 0 (Energy measured)

3 Energy
Accuracy

Get UINT Specifies the accuracy of power and energy metering results, either in
0.01 percent of reading (default) or 0.01 of other units specified in attrib-
ute #4. If 0, unknown.

4 Energy Ac-
curacy Basis

Get UINT Always 0 (Percent of reading)

7 Consumed
Energy
Odometer

Get ODOMETER The value of the consumed energy.

8 Generated
Energy
Odometer

Get ODOMETER The value of the generated energy.

12 Energy Type
Specific Ob-
ject Path

Get Struct of:
UINT (Path
size)
padded EPATH
(Path)

NULL path

• Depending on whether the instance reports consumed or generated energy, either attribute #7 or attrib-
ute #8 is required.

• The struct data type ODOMETER makes it possible to represent very large values, for more information
please consult the CIP specification Volume 1 (CIP Common).

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 82 (188)

10.11 Power Management Object (53h)
Category
Extended

Object Description
The Power Management Object provides standardized attributes and services to support the control of devi-
ces into and out of paused or sleep states. The Energy Control Object (F0h) has to be implemented for this
object to gain access to the network.

See also ..

• Energy Control Object (F0h) (Anybus CompactCom 40 Software Design Guide)

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Power_Management

Set_Pass_Code

Clear_Pass_Code

Class Attributes
Name Access Type Value
1 Revision Get UINT 0002h (Object revision)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 83 (188)

Instance Attributes
Name Access Type Value/Description
1 Power Man-

agement
Command

Get DWORD Collection of bit fields comprising the most recent power management
request.

2 Power Man-
agement
Status

Get DWORD Collection of bit fields providing Power Management status information.

3 Client Path Get Struct of: Specifies the EPATH from this instance (server) to its current owner
(client).

UINT (Path
Size)

Size of path (in words

Padded EPATH
(Path)

4 Number of
Power Man-
agement
Modes

Get UINT Number of Power Management Mode array entries in attribute 5.

5 Power Man-
agement
Nodes

Get Array of: Array of low power modes
Struct of: Modes (Array of mode structures)
USINT Minimum Pause Units (Specifies the unit of Minimum Pause Time)
UINT Minimum Pause Time
USINT Resume Units (Specifies the unit of Resume Time)
UINT Resume Time (Required time to transition from the paused stated to the

owned state.
REAL Power Level (Power in kW for this mode)
BOOL Availability (Specifies whether this mode can be entered given the current

device state)
6 Sleeping

State
Support

Get BOOL 0 (Sleeping state not supported)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 84 (188)

10.12 ADI Object (A2h)
Category
Extended

Object Description
This object maps instances in the Application Data Object to EtherNet/IP. All requests to this object will be
translated into explicit object requests towards the Application Data Object in the host application; the re-
sponse is then translated back to CIP-format and sent to the originator of the request.

The ADI Object can be disabled using attribute 30 in the EtherNet/IP Host Object (F8h). This attribute can al-
so be used to change the ADI Object number.

See also ..

• Application Data Object (see Anybus CompactCom 40 Software Design Guide)

• Parameter Object (0Fh), p. 75 (CIP Object)

• EtherNet/IP Host Object (F8h), p. 150

Supported Services

Class: Get_Attribute_Single

Instance: Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value
1 Revision Get UINT 0002h (Object revision)
2 Max

Instance
Get UINT Equals attribute #4 in the Application Data Object

3 Number of
instances

Get UINT Equals attribute #3 in the Application Data Object

For information about the Application Data Object, please consult the Anybus CompactCom 40 Software De-
sign Guide.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 85 (188)

Instance Attributes
Each instance corresponds to an instance within the Application Data Object (for more information, please
consult the general Anybus CompactCom 40 Software Design Guide).

Name Access Type Value/Description
1 Name Get SHORT_

STRING
Parameter name (Including length)

2 ABCC Data
type

Get Array of USINT Data type of instance value

3 No. of
Elements

Get USINT Number of elements of the specified data type

4 Descriptor Get Array of USINT Bit field describing the access rights for this instance
Bit:
0
1

Meaning:
Set = Get Access
Set = Set Access

5 Value Get/Set Determined by
attribute #2

Instance value
6 Max Value Get The maximum permitted parameter value.
7 Min Value Get The minimum permitted parameter value.
8 Default

Value
Get The default parameter value.

9 Number of
subelements

Get UINT Number of subelements in the ADI. Default value is 1 unless imple-
mented in the application.

Attributes #5–8 are converted to/from CIP standard by the module

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 86 (188)

10.13 Port Object (F4h)
Category
Extended

Object Description
The Port Object describes the CIP ports present on the device. Each routable CIP port is described in a sepa-
rate instance. Non-routable ports may be described. Devices with a single CIP port are not required to sup-
port this object.

The object exists only if enabled in the EtherNet/IP Host Object (Instance Attribute #17).

See also ..

• EtherNet/IP Host Object (F8h), p. 150 (Anybus Module Object)

• CIP Port Configuration Object (0Dh), p. 135 (Host Application Object)

Supported Services

Class: Get_Attributes_All

Get_Attribute_Single

Instance: Get_Attributes_All

Get_Attribute_Single

Class Attributes
Name Access Type Value
1 Revision Get UINT 0002h (Object revision)
2 Max

Instance
Get UINT Max. instance number

3 Number of
Instances

Get UINT Number of ports currently created.

8 Entry Port Get UINT Returns the instance of the Port Object that describes the port through
which this request entered the device.

9 Port Instance
Info

Get Array of: Array of structures containing instance attributes 1 and 2 from each in-
stance. The array is indexed by instance number, up to the maximum
number of instances. The value at index 1 (offset 0) and any non-instanti-
ated instances will be zero.

Struct of:
UINT (Type)
UINT
(Number)

Enumerates the type of port (see instance attribute #1)
CIP port number associated with this port (see instance attribute #2)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 87 (188)

Instance Attributes (Instance #1)
Name Access Type Value/Description
1 Port Type Get UINT 0h (default)

4h (if the application registers a port)
2 Port Number Get UINT 2h
3 Link Object Get Struct of:

UINT
Padded
EPATH

-
2h (Path Length)
20 F5 24 01h (Link Path)

4 Port Name Get SHORT_
STRING

“EtherNet/IP”

5 Port Type
Name

Get SHORT_
STRING

“”

6 Port
Description

Get SHORT_
STRING

“”

7 Node
Address

Get Padded EPATH -

10 Port Routing
Capabilities

Get UDINT 1h (Routing of incoming Unconnected Messaging supported)

See also...

CIP Port Configuration Object (0Dh), p. 135

Instance Attributes (Instances #2... #8)
Name Access Type Value/Description
1 Port Type Get UINT Enumerates the type of port
2 Port Number Get UINT CIP port number associated with this port
3 Link Object Get Struct of:

UINT
Padded
EPATH

-
Path length (number of 16-bit words)
Logical path segments which identify the object for this port. The path
must consist of one logical class segment and one logical instance seg-
ment. The maximum size is 12 bytes.

4 Port Name Get SHORT_
STRING

Name of port, e.g. “Port A”. Max. 64 characters.

5 Port Type
Name

Get SHORT_
STRING

“”

6 Port
Description

Get SHORT_
STRING

“”

7 Node
Address

Get Padded EPATH Node number of this device on port. The range within this data type is re-
stricted to a Port Segment.

8 Port Node
Range

Get Struct of:
UINT (Min.)
UINT (Max.)

-
Min. node number on port
Max. node number on port

10 Port Routing
Capabilities

Get UDINT 1h (Routing of incoming Unconnected Messaging supported)

See also...

CIP Port Configuration Object (0Dh), p. 135 , “Instance Attributes.”.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 88 (188)

10.14 TCP/IP Interface Object (F5h)
Category
Extended

Object Description
This object provides the mechanism to configure the TCP/IP network interface of the module. It groups the
TCP/IP-related settings in one instance for each TCP/IP capable communications interface.

See also ..

• Communication Settings, p. 12

• Network Configuration Object (04h), p. 101 (Anybus Module Object)

Supported Services

Class: Get_Attribute_All

Get_Attribute_Single

Instance: Get_Attribute_All

Get_Attribute_Single

Set_Attribute_Single

Class Attributes
Name Access Type Value
1 Revision Get UINT 0004h (Object revision)
2 Max

instance
Get UINT 1 (Maximum instance number)

3 Number of
instances

Get UINT 1 (Number of instances)

6 Maximum ID
Number
Class
Attributes

Get UINT 7 (The attribute number of the last implemented class attribute)

7 Maximum ID
Number In-
stance
Attributes

Get UINT 13 (The attribute number of the last implemented instance attribute)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 89 (188)

Instance Attributes
Name Access Type Value Comments
1 Status Get DWORD - Bit: Meaning:

(reserved, set to 0)
0–3 When set to h, attribute #5 contains valid

configuration from DHCP or non-volatile stor-
age. When set to 2h, attribute #5 contains
valid configuration from hardware settings.
Remaining values are reserved for future
use.

4 Multicast pending if set to 1.
5 Interface configuration pending if set to 1. A

new configuration will be loaded at the next
reset.

6 AcdStatus. Set to 1 if an address conflict is
detected. Address conflict detection is en-
abled/disabled in attribute #10.

7 AcdFault
8–31 (reserved, set to 0)

2 Configura-
tion
Capability

Get DWORD - Bit: Meaning:
0-1: Always 0. For more information, consult the

CIP specifications.
2: If set to 1, the device is capable of acting as

a DHCP client. The bit is set to 0 if attribute
#24 (Enable DHCP Client) is disabled in the
Ethernet Host Object (F9h), p. 159

3: Always 0. For more information, consult the
CIP specifications.

4: The ‘Configuration Settable’-bit reflects the
value of instance attribute #9 in the "Ether-
Net/IP Host Object (F8h)" on page 161.

5: The module is hardware configurable when
this bit is set to 1. The bit will be set if any of
the address attributes is set in the Network
Configuration Object (04h) during setup or if
attribute #6 (Hardware configurable address)
in the Application Object (FFh) is set.

6: Always 0. For more information, consult the
CIP specifications.

7: If set to 1, the device is capable of detecting
address conflicts. The bit is set to 0 if ad-
dress conflict detection is disabled in the
Ethernet Host Object, see page 159

8 - 31: (reserved, set to 0)
3 Configura-

tion Control
Get/Set DWORD - Value: Meaning

0: Configuration from non-volatile memory
2: Configuration from DHCP

4 Physical Link
Object

Get Struct of: - -
UINT (Path
size)

0002h -

Padded EPATH 20 F6 24 03h Path to Ethernet Link Object, Instance #3
5 Interface

Configura-
tion

Get/Set Struct of: -
UDINT (IP) IP address
UDINT (Mask) Subnet mask
UDINT (GW) Default gateway
UDINT
(DNS1)

Primary DNS

UDINT
(DNS2)

Secondary DNS

STRING
(Domain)

Default domain

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 90 (188)

Name Access Type Value Comments
6 Host Name Get/Set STRING - Host name of Anybus module
8 TTLValue Get/Set USINT 1 TTL value for EtherNet/IP multicast packets

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 91 (188)

Name Access Type Value Comments
9 Mcast Config Set Struct of: IP multicast configuration.

Alloc Control USINT 0 Value: Meaning:
0: Use default allocation algorithm to generate

multicast addresses
1: Allocate multicast addresses according to

the values in the “Num Mcast”- and “Mcast
Start Addr”-fields.

(reserved) USINT 0 Set to zero. Do not change.
Num Mcast UINT -1 Number of multicast addresses to allocate for Ether-

Net/IP
Mcast Start
Addr

UDINT - Starting multicast address from which to begin
allocation

10 SelectAcd Set Bool 1 Value: Meaning:
0: Disable ACD
1: Enable ACD (Default).

If ACD (address conflict detection) is en-
abled, bit 6 in attribute #1 will be set if an
ACD conflict is detected. The Network Status
LED will also indicate a detected conflict, see
Front View, p. 166 .

11 LastConflict-
Detected

Set Struct of: ACD Diagnostic parameters Related to the last conflict
detected.

AcdActiviity USINT - State of ACD activity when last conflict
detected.

RemoteMAC ARRAYof 6
USINT

- MAC address of remote node form the ARP
PDU in which a conflict was detected.

ArpPdu ARRAYof 28
USINT

- Copy of the raw ARP PDU in which a conflict
was detected.

12 EIP Quick-
Connect

Set Bool 0 Value: Meaning:
0: Disable EIP QuickConnect (Default)
1: Enable EIP QuickConnect

If EIP QuickConnect is enabled, the Quick-
Connect feature will direct EtherNet/IP target
devices to quickly power up and join an
EtherNet/IP network.

13 Encapsula-
tion inactivity
timeout

Set UINT 0 - 3600 Number of seconds of inactivity before a TCP connec-
tion is closed.
0: Disabled

• Support for configuring network settings (attributes #3 and #5) from the network can be disabled by im-
plementing attribute #9 in the EtherNet/IP Host Object, see EtherNet/IP Host Object (F8h), p. 150

• Attributes #10 and #11 will not be available if ACD is disabled using attribute #11 in the Ethernet Host Ob-
ject (F9h).

• Attribute #12:

– If the module is configured to use EIP QuickConnect functionality, the EDS file has to be changed.
As the EDS file is changed, the identity of the module has to be changed and the module will require
certification.

– This attribute exists if attribute #26 in the EtherNet/IP Host Object is implemented, see EtherNet/IP
Host Object (F8h), p. 150.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 92 (188)

10.15 Ethernet Link Object (F6h)
Category
Extended

Object Description
This object maintains link specific counters and status information for an IEEE 802.3 communications inter-
face. Exactly one instance for each communications interface on the module is supported. Instances for inter-
nally accessible interfaces can also be supported.

See also ..

• Communication Settings, p. 12

• Network Configuration Object (04h), p. 101 (Anybus Module Object)

Supported Services

Class: Get_Attributes_All

Get_Attribute_Single

Instance: Get_Attributes_All

Get_Attribute_Single

Set_Attribute_Single

Get_And_Clear

Class Attributes
By default, three instances (port 1, port 2 and the internal port) are implemented, meaning that two ports are
activated.

If port 2 is inactivated in the Port 2 State attribute of the Ethernet Host Object (F9h), only one instance (port 1)
should be implemented.

Name Access Type Value
1 Revision Get UINT 0004h (Object revision)
2 Max

Instance
Get UINT 1 or 3 (Maximum instance number)

3 Number of
Instances

Get UINT 1 or 3 (Number of instances)

6 Maximum ID
Number
Class
Attributes

Get UINT 7 (The attribute number of the last implemented class attribute.)

7 Maximum ID
Number In-
stance
Attributes

Get UINT 11 (The attribute number of the last implemented instance attribute.)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 93 (188)

Instance Attributes
Name Access Type Value Comments
1 Interface

Speed
Get UDINT 10 or 100 Actual Ethernet interface speed.

2 Interface
Flags

Get DWORD - See table “Interface Flags” below.

3 Physical
Address

Get Array of 6
USINTs

(MAC ID) Physical network address, i.e. assigned MAC address.

4 Interface
Counters

Get Struct of:

In Octets UDINT N/A Octets received on the interface
In Ucast
Packets

UDINT N/A Unicast packets received on the interface

In NUcast
Packets

UDINT N/A Nonunicast packets received on the interface

In Discards UDINT N/A Inbound packets with unknown protocol
In Errors UDINT N/A Inbound packets that contain errors (does not include

In discards)
In Unknown
Protos

UDINT N/A Inbound packets with unknown protocol

Out Octets UDINT N/A Octets sent on the interface
Out Ucast
Packets

UDINT N/A Unicast packets sent on the interface

Out NUcast
Packets

UDINT N/A Nonunicast packets sent on the interface

Out Discards UDINT N/A Outbound packets with unknown protocol
Out Errors UDINT N/A Outbound packets that contain errors (does not in-

clude Out discards)
5 Media

Counters
Get Struct of: Media specific counters

Alignment
Errors

UDINT N/A Frames received that are not an integral number of oc-
tets in length

FCS Errors UDINT N/A Frames received that do not pass the FCS check
Single
Collisions

UDINT N/A Successfully transmitted frames that have experi-
enced exactly one collision

Multiple
Collisions

UDINT N/A Successfully transmitted frames that have experi-
enced more than one collision

SQE Test
Errors

UDINT 0 The number of times the SQE test error message is
generated(Counter not provided with current PHY
interface)

Deferred
Transmis-
sions

UDINT N/A Frames for which the first transmission attempt is de-
layed because the medium is busy

Late
Collisions

UDINT N/A The number of times a collision is detected later than
512 bit-times into the transmission of a packet

Excessive
Collisions

UDINT N/A Frames for which a transmission fails due to excessive
collisions

MAC Trans-
mit Errors

UDINT N/A Frames for which a transmission fails due to an inter-
nal MAC sublayer receive error

Carrier
Sense Errors

UDINT N/A The number of times that the carrier sense condition
was lost or never asserted when attempting to transmit
a frame

Frame Too
Long

UDINT N/A Frames received that exceed the maximum permitted
frame size

MAC Re-
ceive Errors

UDINT N/A Frames for which reception on an interface fails due to
an internal MAC sublayer receive error

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 94 (188)

Name Access Type Value Comments
6 Interface

Control
Get/Set Struct of:

Control Bits WORD - Interface control bits
Forced Inter-
face Speed

UINT - Speed at which the interface shall be forced to operate.
Returns ‘Object state Conflict’ if auto-negotiation is
enabled

7 Interface
Type

Get USINT - See table “Interface State” below.

8 Interface
State

Get USINT - See table “Interface Type” below.

9 Admin State Get/Set USINT - See table “Admin State” below.
10 Interface

Label
Get SHORT_

STRING
— See table “Interface Label” below.

11 Interface
Capability

Get Struct of: - Indication of the capabilities of the interface

Capability
Bits

DWORD - Interface capabilities, other than speed/duplex
See table “Interface Capability” below.

Speed/Du-
plex Options

Struct of: - Indicates speed/duplex pairs supported in the Inter-
face Control Attribute

USINT - Speed/duplex array count
Array of Struct
of:

- Speed/duplex array

UINT - Interface speed
USINT - Interface Duplex Mode

0 = half duplex
1 = full duplex
2 - 255 = Reserved

• Support for attribute #6 can be disabled by implementing attribute #9 in the EtherNet/IP Host Object
(F8h). see EtherNet/IP Host Object (F8h), p. 150

• Support for attribute #8 can be disabled by implementing the port state attributes (#12 or #13) in the
Ethernet Host object (F9h) see Ethernet Host Object (F9h), p. 159

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 95 (188)

Interface Flags
Bit Name Description
0 Link status Indicates whether or not the Ethernet 802.3 communications interface is connected to

an active network.
Value: Meaning:
0 Inactive link
1 Active link

1 Half/full duplex Indicates the duplex mode currently in use.
Value:
0
1

Meaning:
Half duplex
Full duplex

2 - 4 Negotiation Status Indicates the status of link auto-negotiation.
Value: Meaning:
0 Auto-negotiation in progress.
1 Auto-negotiation and speed detection failed (using default values)

(Recommended default values are 10 Mbps, half duplex)
2 Auto negotiation failed but detected speed (using default duplex value)
3 Successfully negotiated speed and duplex.
4 Auto-negotiation not attempted. Forced speed and duplex.

5 Manual Setting requires
Reset

Value: Meaning:
0 Interface can activate changes to link parameters during runtime
1 Reset is required in order for changes to have effect

6 Local Hardware Fault Value: Meaning:
0 No local hardware fault detected
1 Local hardware fault detected

7-31 (reserved) Set to 0.

Interface State
This attribute indicates the current operational state of the interface.

Value Description
0 Unknown interface state.
1 The interface is enabled and is ready to send and receive data.
2 The interface is disabled.
3 The interface is testing.

Admin State
This attribute controls the administrative setting of the interface state.

Value Description
0 (reserved)
1 Enable the interface.
2 Disable the interface.
3-255 (reserved)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

CIP Objects 96 (188)

Interface Label
This attribute is configurable via the EtherNet/IP Host Object, see page 150

Instance Value
1 Port 1
2 Port 2
3 Internal

Interface Type
Instance Value Description
1 2 Twisted-pair
2 2 Twisted-pair
3 1 Internal interface

Interface Capability
Bit Name Description Implementation
0 Manual set-

ting requires
reset

Indicates whether or not the device requires a reset to apply
changes made to the Interface Control attribute (#6).

Return 0

0 Indicates that the device automatically applies
changes made to the Interface Control attribute (#6)
and, therefore, does not require a reset in order for
changes to take effect. This bit shall have this value
when the Interface Control attribute (#6) is not
implemented.

1 1 = Indicates that the device does not automatically
apply changes made to the Interface Control attribute
(#6) and, therefore, will require a reset in order for
changes to take effect.
Note: this bit shall also be replicated in the Interface
Flags attribute (#2), in order to retain backwards com-
patibility with previous object revisions.

1 Auto-
negotiate

0 Indicates that the interface does not support link auto-
negotiation

0 for internal interface, 1 for external
interfaces

1 Indicates that the interface supports link auto-
negotiation

2 Auto-MDIX 0 Indicates that the interface does not support auto
MDIX operation

0 for internal interface, 1 for external
interfaces

1 Indicates that the interface supports auto MDIX
operation

3 Manual
speed/duplex

0 Indicates that the interface does not support manual
setting of speed/duplex. The Interface Control attrib-
ute (#6) shall not be supported.

0 for internal interface, 1 for external
interfaces

1 Indicates that the interface supports manual setting of
speed/duplex via the Interface Control attribute (#6)

4 - 31 Reserved Shall be set to 0 Return 0

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 97 (188)

11 Anybus Module Objects
11.1 General Information

This chapter specifies the Anybus Module Object implementation and how they correspond to
the functionality in the Anybus CompactCom 40 EtherNet/IP.

Standard Objects:

• Anybus Object (01h), p. 98

• Diagnostic Object (02h), p. 99

• Network Object (03h), p. 100

• Network Configuration Object (04h), p. 101

Network Specific Objects:

• Socket Interface Object (07h), p. 110

• SMTP Client Object (09h), p. 127

• Anybus File System Interface Object (0Ah), p. 132

• Network Ethernet Object (0Ch), p. 133

• CIP Port Configuration Object (0Dh), p. 135

• Functional Safety Module Object (11h), p. 137

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 98 (188)

11.2 Anybus Object (01h)
Category
Basic

Object Description
This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Module type Get UINT16 0403h (Standard Anybus CompactCom 40)
2... 11 - - - Consult the general Anybus CompactCom 40 Software

Design Guide for further information.
12 LED colors Get struct of: Value: Color:

UINT8 (LED1A) 01h Green
UINT8 (LED1B) 02h Red
UINT8 (LED2A) 01h Green
UINT8 (LED2B) 02h Red

13...
16

- - - Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

Extended

Name Access Type Value

17 Virtual attributes Get/Set - Consult the general Anybus CompactCom 40 Software
Design Guide for further information.18 Black list/White list Get/Set

19 Network time Get UINT64 0 (Not supported)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 99 (188)

11.3 Diagnostic Object (02h)
Category
Basic

Object Description
This object provides a standardized way of handling host application events & diagnostics, and is

thoroughly described in the general Anybus CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Create

Delete

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1... 4 - - - Consult the general Anybus CompactCom 40 Software Design

Guide for further information.
11 Max no. of instances Get UINT16 5+1 (Of the maximum number of instances there should always

be one instance reserved for an event of severity level ‘Major,
unrecoverable’, to force the module into the ‘EXCEPTION’-
state.)

12 Supported
functionality

Get BITS32 Bit 0: “0” (Latching events are not supported)
Bit 1 - 31: reserved (shall be “0”)

Instance Attributes (Instance #1)
Extended

Name Access Data Type Value
1 Severity Get UINT8 Consult the general Anybus CompactCom 40 Software Design

Guide for further information.2 Event Code Get UINT8
3 - - - Not implemented in product
4 Slot Get UINT16 Consult the general Anybus CompactCom 40 Software Design

Guide for further information.5 ADI Get UINT16
6 Element Get UINT8
7 Bit Get UINT8

Attributes #2 and #4–7 can not be represented on the network and are ignored by the module.

In this implementation, the severity level of all instances are combined (using logical OR) and represented on
the network through the CIP Identity Object.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 100 (188)

11.4 Network Object (03h)
Category
Basic

Object Description
For more information regarding this object, consult the general Anybus CompactCom 40 Software Design
Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Map_ADI_Write_Area

Map_ADI_Read_Area

Map_ADI_Write_Ext_Area

Map_ADI_Read_Ext_Area

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)
Basic

Name Access Type Value
1 Network type Get UINT16 009Bh (EtherNet/IP Beacon Based 2–port)
2 Network type string Get Array of

CHAR
“Ethernet/IP(TM)”

3 Data format Get ENUM 00h (LSB first)
4 Parameter data

support
Get BOOL True

5 Write process data
size

Get UINT16 Current write process data size (in bytes)
Updated on every successful Map_ADI_Write_Area. (Consult
the general Anybus CompactCom 40 Software Design Guide for
further information.)

6 Read process data
size

Get UINT16 Current read process data size (in bytes)
Updated on every successful Map_ADI_Read_Area. (Consult
the general Anybus CompactCom 40 Software Design Guide for
further information.)

7 Exception
Information

Get UINT8 Additional information available if the module has entered the
EXCEPTION state.
Value:
00h
01h
02h

Meaning:
No information available
Invalid assembly instance mapping
Missing MAC address (Only valid for Anybus IP)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 101 (188)

11.5 Network Configuration Object (04h)
Category
Extended

Object Description
This object holds network specific configuration parameters that may be set by the end user. A reset com-
mand (factory default) issued towards this object will result in all instances being set to their default values.

If the settings in this object do not match the configuration used, the Module Status LED will flash red to indi-
cate a minor error.

The object is described in further detail in the Anybus CompactCom 40 Software Design Guide.

See also...

• Communication Settings, p. 12

• TCP/IP Interface Object (F5h), p. 88 (CIP-object)

• Ethernet Link Object (F6h), p. 92

• E-mail Client, p. 32

Supported Commands

Object: Get_Attribute

Reset

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Object Attributes (Instance #0)
Name Access Data Type Value Description
3 Number of instances Get UINT16 15 Supported number of instances
4 Highest instance

number
Get UINT16 19 Highest instance number

(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 102 (188)

Instance Attributes (Instance #3, IPAddress)
Value is used after module reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“IP address”
(Multilingual, see page 109)

2 Data type Get UINT8 04h (= UINT8)
3 Number of elements Get UINT8 04h (four elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

UINT8
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of
UINT8

Holds the configured value, which will be written to attribute #5
after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #4, Subnet Mask)
Value is used after module reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“Subnet mask”
(Multilingual, see page 109)

2 Data type Get UINT8 04h (= UINT8)
3 Number of elements Get UINT8 04h (four elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

UINT8
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of
UINT8

Holds the configured value, which will be written to attribute #5
after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #5, Gateway Address)
Value is used after module reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“Gateway”
(Multilingual, see page 109)

2 Data type Get UINT8 04h (= UINT8)
3 Number of elements Get UINT8 04h (four elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

UINT8
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of
UINT8

Holds the configured value, which will be written to attribute #5
after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 103 (188)

Instance Attributes (Instance #6, DHCP Enable)
Value is used after module reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“DHCP”
(Multilingual, see page 109)

2 Data type Get UINT8 08h (= ENUM)
3 Number of elements Get UINT8 01h (one element)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set ENUM If read, the actual value will be received. If written, the written

value is reflected in attribute #6 until a reset.
(Multilingual, see page 109)
Value String Meaning
00h “Disable” DHCP disabled
01h “Enable” DHCP enabled (default)

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5
after the module has been reset.
Value String Meaning
00h “Disable” DHCP disabled
01h “Enable” DHCP enabled

Instance Attributes (Instance #7 Ethernet Communication Settings 1)
Changes have immediate effect.

Name Access Data Type Description
1 Name Get Array of

CHAR
“Comm 1”
(Multilingual, see page 109)

2 Data type Get UINT8 08h (= ENUM)
3 Number of elements Get UINT8 01h (one element)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set ENUM Value String Meaning

(Multilingual, see page 109)
00h “Auto” Auto negotiation (default)
01h “10 HDX” 10Mbit, half duplex
02h “10 FX” 10Mbit, full duplex
03h “100HDX” 100Mbit, half duplex
04h “100FX” 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5
after the module has been reset.
Value String Meaning

(Multilingual, see page 109)
00h “Auto” Auto negotiation
01h “10 HDX” 10Mbit, half duplex
02h “10 FX” 10Mbit, full duplex
03h “100HDX” 100Mbit, half duplex
04h “100FX” 100Mbit, full duplex

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 104 (188)

Instance Attributes (Instance #8 Ethernet Communication Settings 2)
Changes have immediate effect.

Name Access Data Type Description
1 Name Get Array of

CHAR
“Comm 2”
(Multilingual, see page 109)

2 Data type Get UINT8 08h (= ENUM)
3 Number of elements Get UINT8 01h (one element)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set ENUM Value String Meaning

(Multilingual, see page 109)
00h “Auto” Auto negotiation (default)
01h “10 HDX” 10Mbit, half duplex
02h “10 FX” 10Mbit, full duplex
03h “100HDX” 100Mbit, half duplex
04h “100FX” 100Mbit, full duplex

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5
after the module has been reset.
Value String Meaning

(Multilingual, see page 109)
00h “Auto” Auto negotiation
01h “10 HDX” 10Mbit, half duplex
02h “10 FX” 10Mbit, full duplex
03h “100HDX” 100Mbit, half duplex
04h “100FX” 100Mbit, full duplex

Instance Attributes (Instance #9, DNS1)
This instance holds the address to the primary DNS server. Changes are valid after reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“DNS1”
(Multilingual, see page 109)

2 Data type Get UINT8 04h (= UINT8)
3 Number of elements Get UINT8 04h (four elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

UINT8
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of
UINT8

Holds the configured value, which will be written to attribute #5
after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 105 (188)

Instance Attributes (Instance #10, DNS2)
This instance holds the address to the secondary DNS server. Changes are valid after reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“DNS2”
(Multilingual, see page 109)

2 Data type Get UINT8 04h (= UINT8)
3 Number of elements Get UINT8 04h (four elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

UINT8
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of
UINT8

Holds the configured value, which will be written to attribute #5
after the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #11, Host name)
This instance holds the host name of the module. Changes are valid after reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“Host name”
(Multilingual, see page 109)

2 Data type Get UINT8 07h (= CHAR)
3 Number of elements Get UINT8 40h (64 elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

CHAR
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
Host name, 64 characters

6 Configured Value Get Array of
CHAR

Holds the configured value, which will be written to attribute #5
after the module has been reset.
Host name, 64 characters

Instance Attributes (Instance #12, Domain name)
This instance holds the domain name. Changes are valid after reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“Host name”
(Multilingual, see page 109)

2 Data type Get UINT8 07h (= CHAR)
3 Number of elements Get UINT8 30h (48 elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

CHAR
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
Domain name, 48 characters

6 Configured Value Get Array of
CHAR

Holds the configured value, which will be written to attribute #5
after the module has been reset.
Domain name, 48 characters

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 106 (188)

Instance Attributes (Instance #13, SMTP Server)
This instance holds the SMTP server address. Changes are valid after reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“SMTP server”
(Multilingual, see page 109)

2 Data type Get UINT8 07h (= CHAR)
3 Number of elements Get UINT8 40h (64 elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

CHAR
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
SMTP server address, 64 characters.

6 Configured Value Get Array of
CHAR

Holds the configured value, which will be written to attribute #5
after the module has been reset.
SMTP server address, 64 characters.

Instance Attributes (Instance #14, SMTP User)
This instance holds the user name for the SMTP account. Changes are valid after reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“SMTP user”
(Multilingual, see page 109)

2 Data type Get UINT8 07h (= CHAR)
3 Number of elements Get UINT8 40h (64 elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

CHAR
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
SMTP account user name, 64 characters

6 Configured Value Get Array of
CHAR

Holds the configured value, which will be written to attribute #5
after the module has been reset.
SMTP account user name, 64 characters

Instance Attributes (Instance #15, SMTP Password)
This instance holds the password for the SMTP account. Changes are valid after reset.

Name Access Data Type Description
1 Name Get Array of

CHAR
“SMTP Pswd”
(Multilingual, see page 109)

2 Data type Get UINT8 07h (= CHAR)
3 Number of elements Get UINT8 40h (64 elements)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set Array of

CHAR
If read, the actual value will be received. If written, the written
value is reflected in attribute #6 until a reset.
SMTP account password, 64 characters

6 Configured Value Get Array of
CHAR

Holds the configured value, which will be written to attribute #5
after the module has been reset.
SMTP account password, 64 characters

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 107 (188)

Instance Attributes (Instance #16, MDI 1 Settings)
This instance holds the settings for MDI/MDIX 1. Changes have immediate effect.

Name Access Data Type Description
1 Name Get Array of

CHAR
“MDI 1”

2 Data type Get UINT8 08h (= ENUM)
3 Number of elements Get UINT8 01h (one element)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set ENUM Value (ENUM):

00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

5 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5
after the module has been reset.
Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto”
“MDI”
“MDIX”

Instance Attributes (Instance #17, MDI 2 Settings)
This instance holds the settings for MDI/MDIX 2. Changes have immediate effect.

Name Access Data Type Description
1 Name Get Array of

CHAR
“MDI 2”

2 Data type Get UINT8 08h (= ENUM)
3 Number of elements Get UINT8 01h (one element)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set ENUM Value (ENUM):

00h
01h
02h

String: Meaning:
“Auto” (default)
“MDI”
“MDIX”

5 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5
after the module has been reset.
Value (ENUM):
00h
01h
02h

String: Meaning:
“Auto”
“MDI”
“MDIX”

Instance Attributes (Instances #18 and #19)
These instances are reserved for future attributes.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 108 (188)

Instance Attributes (Instance #20, QuickConnect)
tance Attributes (Instance #20, QuickConnect)

This instance enables or disables the QuickConnect functionality from the application. Changes are valid
after reset or power cycle. The value of the QuickConnect attribute (#12) in the TCP/IP Interface object (F5h),
will change immediately.

QuickConnect has to be enabled in the Ethernet Host object (F9h) for this instance to be available.

See also...

• TCP/IP Interface Object (F5h), p. 88

• Ethernet Host Object (F9h), p. 159

Name Access Data Type Description
1 Name Get Array of

CHAR
“QuickConnect”

2 Data type Get UINT8 08h (= ENUM)
3 Number of elements Get UINT8 01h (one element)
4 Descriptor Get UINT8 07h (read/write/shared access)
5 Value Get/Set ENUM If read, the actual value will be received. If written, the written val-

ue is reflected in attribute #6 until a reset.
Value:
00h
01h

Meaning:
Disable (default)
Enable

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5
after the module has been reset.
Value:
00h
01h

Meaning:
Disable
Enable

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 109 (188)

Multilingual Strings
The instance names and enumeration strings in this object are multilingual, and are translated based on the
current language settings as follows:

Instance English German Spanish Italian French
3 IP address IP-Adresse Dirección IP Indirizzo IP Adresse IP
4 Subnet mask Subnetz-

maske
Masac.
subred

Sottorete Sous-réseau

5 Gateway Gateway Pasarela Gateway Passerelle
6 DHCP DHCP DHCP DHCP DHCP

Enable Einschalten Activado Abilitato Activé
Disable Ausschalten Desactivado Disabilitato Désactivé

7 Comm 1 Komm 1 Comu 1 Connessione
1

Comm 1

Auto Auto Auto Auto Auto
10 HDX 10 HDX 10 HDX 10 HDX 10 HDX
10 FDX 10 FDX 10 FDX 10 FDX 10 FDX
100 HDX 100 HDX 100 HDX 100 HDX 100 HDX
100 FDX 100FDX 100 FDX 100 FDX 100 FDX

8 Comm 2 Komm 2 Comu 2 Connessione
2

Comm 2

Auto Auto Auto Auto Auto
10 HDX 10 HDX 10 HDX 10 HDX 10 HDX
10 FDX 10 FDX 10 FDX 10 FDX 10 FDX
100 HDX 100 HDX 100 HDX 100 HDX 100 HDX
100 FDX 100FDX 100 FDX 100 FDX 100 FDX

9 DNS1 DNS 1 DNS Primaria DNS1 DNS1
10 DNS2 DNS 2 DNS

Secundia.
DNS2 DNS2

11 Host name Host name Nombre Host Nome Host Nom hôte
12 Domain name Domain name Nobre

Domain
Nome
Dominio

Dom
Domaine

13 SMTP Server SMTP Server Servidor
SMTP

Server SMTP SMTP
serveur

14 SMTP User SMTP User Usuario
SMTP

Utente SMTP SMTP utilisa.

15 SMTP Pswd SMTP PSWD Clave SMTP Password
SMTP

SMTP mt
passe

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 110 (188)

11.6 Socket Interface Object (07h)
Category
Extended

Object Description
This object provides direct access to the TCP/IP stack socket interface, enabling custom protocols to be im-
plemented over TCP/UDP.

Note that some of the commands used when accessing this object may require segmentation. A message will
be segmented if the amount of data sent or received is larger than the message channel can handle. For
more information, see Message Segmentation, p. 125.

The use of functionality provided by this object should only be attempted by users who are already familiar with
socket interface programming and who fully understands the concepts involved in TCP/IP programming.

Supported Commands

Object: Get_Attribute

Create (See below)

Delete (See below)

DNS_Lookup (See below)

Instance: Get_Attribute

Set_Attribute

Bind (See below)

Shutdown (See below)

Listen (See below)

Accept (See below)

Connect (See below)

Receive (See below)

Receive_From (See below)

Send (See below)

Send_To (See below)

P_Add_membership (See below)

IP_Drop_membership (See below)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“Socket interface”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of opened sockets
4 Highest instance no. Get UINT16 Highest created instance number
11 Max. no. of instances Get UINT16 0008h (8 instances): BACnet/IP

0014h (20 instances): All other industrial Ethernet
networks

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 111 (188)

Instance Attributes (Sockets #1...Max. no. of instances)
Extended

Name Access Data Type Description
1 Socket Type Get UINT8 Value: Socket Type

00h SOCK_STREAM, NONBLOCKING (TCP)
01h SOCK_STREAM, BLOCKING (TCP)
02h SOCK_DGRAM, NONBLOCKING (UDP)
03h SOCK_DGRAM, BLOCKING (UDP)

2 Port Get UINT16 Local port that the socket is bound to
3 Host IP Get UINT32 Host IP address, or 0 (zero) if not connected
4 Host port Get UINT16 Host port number, or 0 (zero) if not connected
5 TCP State Get UINT8 State (TCP sockets only):

Value State/Description
00h CLOSED Closed
01h LISTEN Listening for connection
02h SYN_SENT Active, have sent and received SYN
03h SYN_RECEIVED Have sent and received SYN
04h ESTABLISHED Established.
05h CLOSE_WAIT Received FIN, waiting for close
06h FIN_WAIT_1 Have closed, sent FIN
07h CLOSING Closed exchanged FIN; await FIN ACK
08h LAST_ACK Have FIN and close; await FIN ACK
09h FIN_WAIT_2 Have closed, FIN is acknowledged
Ah TIME_WAIT Quiet wait after close

6 TCP RX bytes Get UINT16 Number of bytes in RX buffers (TCP sockets only)
7 TCP TX bytes Get UINT16 Number of bytes in TX buffers (TCP sockets only)
8 Reuse address Get/Set BOOL Socket can reuse local address

Value
1
0

Meaning
Enabled
Disabled (default)

9 Keep alive Get/Set BOOL Protocol probes idle connection (TCP sockets only).
If the Keep alive attribute is set, the connection will be probed
for the first time after it has been idle for 120 minutes. If a probe
attempt fails, the connection will continue to be probed at inter-
vals of 75s. The connection is terminated after 8 failed probe
attempts.
Value
1
0

Meaning
Enabled
Disabled (default)

10 IP Multicast TTL Get/Set UINT8 IP Multicast TTL value (UDP sockets only).
Default = 1.

11 IP Multicast Loop Get/Set BOOL IP multicast loop back (UDP sockets only)
Must belong to group in order to get the loop backed message
Value
1
0

Meaning
Enabled (default)
Disabled

12 (reserved)
13 TCP No Delay Get/Set BOOL Don’t delay send to coalesce packets (TCP).

Value
1
0

Meaning
Delay (default)
Don’t delay (turn off Nagle’s algorithm on socket)

14 TCP Connect
Timeout

Get/Set UINT16 TCP Connect timeout in seconds (default = 75s)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 112 (188)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object Instance

Description

This command creates a socket.

This command is only allowed in WAIT_PROCESS, IDLE and PROCESS_ACTIVE states.

• Command Details

Field Contents
CmdExt[0] (reserved, set to zero)
CmdExt[1] Value:

00h
01h
02h
03h

Socket Type:
SOCK_STREAM, NON-BLOCKING (TCP)
SOCK_STREAM, BLOCKING (TCP)
SOCK_DGRAM, NON-BLOCKING (UDP)
SOCK_DGRAM, BLOCKING (UDP)

• Response Details

Field Contents Comments
Data[0] Instance number (low) Instance number of the created socket.
Data[1] Instance number (high)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 113 (188)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object Instance

Description

This command deletes a previously created socket and closes the connection (if connected).

• If the socket is of TCP-type and a connection is established, the connection is terminated with the RST-
flag.

• To gracefully terminate a TCP-connection, it is recommended to use the ‘Shutdown’-command (see be-
low) before deleting the socket, causing the connection to be closed with the FIN-flag instead.

• Command Details

Field Contents Comments
CmdExt[0] Instance number to delete (low) Instance number of socket that shall be deleted.
CmdExt[1] Instance number to delete (high)

• Response Details

(no data)

Command Details: Bind
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command binds a socket to a local port.

• Command Details

Field Contents Comments
CmdExt[0] Requested port number (low) Set to 0 (zero) to request binding to any free port.
CmdExt[1] Requested port number (high)

• Response Details

Field Contents Comments
CmdExt[0] Bound port number (low) Actual port that the socket was bound to.
CmdExt[1] Bound port number (high)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 114 (188)

Command Details: Shutdown
Category

Extended

Details

Command Code 11h

Valid for: Instance

Description

This command closes a TCP-connection using the FIN-flag. Note that the response does not indicate if the
connection actually shut down, which means that this command cannot be used to poll non-blocking sockets,
nor will it block for blocking sockets.

• Command Details

Field Contents
CmdExt[0] (reserved, set to zero)
CmdExt[1] Value:

00h
01h
02h

Mode:
Shutdown receive channel
Shutdown send channel
Shutdown both receive- and send channel

• Response Details

(no data)

The recommended sequence to gracefully shut down a TCP connection is described below.

Application initiates shutdown:

1. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send chan-
nel, note that the receive channel will still be operational.

2. Receive data on socket until error message Object specific error (EPIPE (13)) is received, indicating that
the host closed the receive channel. If host does not close the receive channel use a timeout and prog-
ress to step 3.

3. Delete the socket instance. If step 2 timed out, RST-flag will be sent to terminate the socket.

Host initiates shutdown:

1. Receive data on socket, if zero bytes received it indicates that the host closed the receive channel of the
socket.

2. Try to send any unsent data to the host.

3. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send
channel.

4. Delete the socket instance.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 115 (188)

Command Details: Listen
Category

Extended

Details

Command Code 12h

Valid for: Instance

Description

This command puts a TCP socket in listening state.

• Command Details

Field Contents
CmdExt[0] (reserved, set to zero)
CmdExt[1] (reserved)

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 116 (188)

Command Details: Accept
Category

Extended

Details

Command Code 13h

Valid for: Instance

Description

This command accepts incoming connections on a listening TCP socket. A new socket instance is created for
each accepted connection. The new socket is connected with the host and the response returns its instance
number.

NONBLOCKING mode This command must be issued repeatedly (polled) for incoming connections. If no incoming
connection request exists, the module will respond with error code 0006h (EWOULDBLOCK).

BLOCKING mode This command will block until a connection request has been detected.

This command will only be accepted if there is a free instance to use for accepted connections. For blocking
connections, this command will reserve an instance.

• Command Details

(no data)

• Response Details

Field Contents
Data[0] Instance number for the connected socket (low byte)
Data[1] Instance number for the connected socket (high byte)
Data[2] Host IP address byte 4
Data[3] Host IP address byte 3
Data[4] Host IP address byte 2
Data[5] Host IP address byte 1
Data[6] Host port number (low byte)
Data[7] Host port number (high byte)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 117 (188)

Command Details: Connect
Category

Extended

Details

Command Code 14h

Valid for: Instance

Description

For SOCK-DGRAM-sockets, this command specifies the peer with which the socket is to be associated (to
which datagrams are sent and the only address from which datagrams are received).

For SOCK_STREAM-sockets, this command attempts to establish a connection to a host.

SOCK_STREAM-sockets may connect successfully only once, while SOCK_DGRAM-sockets may use this
service multiple times to change their association. SOCK-DGRAM-sockets may dissolve their association by
connecting to IP address 0.0.0.0, port 0 (zero).

NON-BLOCKING mode: This command must be issued repeatedly (polled) until a connection is connected, rejected or
timed out. The first connect-attempt will be accepted, thereafter the command will return error
code 22 (EINPROGRESS) on poll requests while attempting to connect.

BLOCKING mode: This command will block until a connection has been established or the connection request is
cancelled due to a timeout or a connection error.

• Command Details

Field Contents
CmdExt[0] (reserved, set to zero)
CmdExt[1]
Data[0] Host IP address byte 4
Data[1] Host IP address byte 3
Data[2] Host IP address byte 2
Data[3] Host IP address byte 1
Data[4] Host port number (low byte)
Data[5] Host port number (high byte)

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 118 (188)

Command Details: Receive
Category

Extended

Details

Command Code 15h

Valid for: Instance

Description

This command receives data from a connected socket. Message segmentation may be used to receive up to
1472 bytes (for more information, see Message Segmentation, p. 125).

For SOCK-DGRAM-sockets, the module will return the requested amount of data from the next received da-
tagram. If the datagram is smaller than requested, the entire datagram will be returned in the response mes-
sage. If the datagram is larger than requested, the excess bytes will be discarded.

For SOCK_STREAM-sockets, the module will return the requested number of bytes from the received data
stream. If the actual data size is less than requested, all available data will be returned.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

If the module responds successfully with 0 (zero) bytes of data, it means that the host has closed the connec-
tion. The send channel may however still be valid and must be closed using Shutdown and/or Delete.

• Command Details

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p.

125
Data[0] Receive data size (low) Only used in the first segment
Data[1] Receive data size (high)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p.
125).

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p.

125
Data[0...n] Received data -

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 119 (188)

Command Details: Receive_From
Category

Extended

Details

Command Code 16h

Valid for: Instance

Description

This command receives data from an unconnected SOCK_DGRAM-socket. Message segmentation may be
used to receive up to 1472 bytes (For more information, see Message Segmentation, p. 125).

The module will return the requested amount of data from the next received datagram. If the datagram is
smaller than requested, the entire datagram will be returned in the response message. If the datagram is larg-
er than requested, the excess bytes will be discarded.

The response message contains the IP address and port number of the sender.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

• Command Details

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p.

125
Data[0] Receive data size (low byte) Only used in the first segment
Data[1] Receive data size (high byte)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p.
125).

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p.

125
Data[0] Host IP address byte 4 The host address/port information is only included in the

first segment. All data thereafter will start at Data[0]Data[1] Host IP address byte 3
Data[2] Host IP address byte 2
Data[3] Host IP address byte 1
Data[4] Host port number (low byte)
Data[5] Host port number (high byte)
Data[6...n] Received data

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 120 (188)

Command Details: Send
Category

Extended

Details

Command Code 17h

Valid for: Instance

Description

This command sends data on a connected socket. Message segmentation may be used to send up to 1472
bytes (For more information, seeMessage Segmentation, p. 125).

NON-BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will respond with
error code 0006h (EWOULDBLOCK)

BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will block until
there is.

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 125).

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1] Segmentation Control (For more information, seeMessage Segmentation, p.

125)
Data[0...n] Data to send -

• Response Details

Field Contents Comments
CmdExt[0] (reserved) (ignore)
CmdExt[1]
Data[0] Number of sent bytes (low) Only valid in the last segment
Data[1] Number of sent bytes (high)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 121 (188)

Command Details: Send_To
Category

Extended

Details

Command Code 18h

Valid for: Instance

Description

This command sends data to a specified host on an unconnected SOCK-DGRAM-socket. Message segmen-
tation may be used to send up to 1472 bytes (For more information, see appendix For more information, see
Message Segmentation, p. 125).

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 125).

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1] Segmentation Control For more information, see Message Segmentation, p.

125
Data[0] Host IP address byte 4 The host address/port information shall only be included

in the first segment. All data thereafter must start at Data
[0]Data[1] Host IP address byte 3

Data[2] Host IP address byte 2
Data[3] Host IP address byte 1
Data[4] Host port number (low byte)
Data[5] Host port number (high byte)
Data[6...n] Data to send

• Response Details

Field Contents Comments
CmdExt[0] (reserved) (ignore)
CmdExt[1]
Data[0] Number of sent bytes (low byte) Only valid in the last segment
Data[1] Number of sent bytes (high byte)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 122 (188)

Command Details: IP_Add_Membership
Category

Extended

Details

Command Code 19h

Valid for: Instance

Description

This command assigns the socket an IP multicast group membership. The module always joins the “All hosts
group” automatically, however this command may be used to specify up to 20 additional memberships.

• Command Details

Field Contents
CmdExt[0] (reserved, set to zero)
CmdExt[1]
Data[0] Group IP address byte 4
Data[1] Group IP address byte 3
Data[2] Group IP address byte 2
Data[3] Group IP address byte 1

• Response Details

(no data)

Command Details: IP_Drop_Membership
Category

Extended

Details

Command Code 1Ah

Valid for: Instance

Description

This command removes the socket from an IP multicast group membership.

• Command Details

Field Contents
CmdExt[0] (reserved, set to zero)
CmdExt[1]
Data[0] Group IP address byte 4
Data[1] Group IP address byte 3
Data[2] Group IP address byte 2
Data[3] Group IP address byte 1

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 123 (188)

Command Details: DNS_Lookup
Category

Extended

Details

Command Code 1Bh

Valid for: Object

Description

This command resolves the given host name and returns the IP address.

• Command Details

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1]
Data[0... N] Host name Host name to resolve

• Response Details (Success)

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1]
Data[0] IP address byte 4 IP address of the specified host
Data[1] IP address byte 3
Data[2] IP address byte 2
Data[3] IP address byte 1

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 124 (188)

Socket Interface Error Codes (Object Specific)
The following object-specific error codes may be returned by the module when using the socket interface
object.

Error Code Name Meaning
1 ENOBUFS No internal buffers available
2 ETIMEDOUT A timeout event occurred
3 EISCONN Socket already connected
4 EOPNOTSUPP Service not supported
5 ECONNABORTED Connection was aborted
6 EWOULDBLOCK Socket cannot block because unblocking socket type
7 ECONNREFUSED Connection refused
8 ECONNRESET Connection reset
9 ENOTCONN Socket is not connected
10 EALREADY Socket is already in requested mode
11 EINVAL Invalid service data
12 EMSGSIZE Invalid message size
13 EPIPE Error in pipe
14 EDESTADDRREQ Destination address required
15 ESHUTDOWN Socket has already been shutdown
16 (reserved) -

17 EHAVEOOB Out of band data available
18 ENOMEM No internal memory available
19 EADDRNOTAVAIL Address is not available
20 EADDRINUSE Address already in use
21 (reserved) -

22 EINPROGRESS Service already in progress
28 ETOOMANYREFS Too many references
101 Command aborted If a command is blocking on a socket, and that socket is closed using the De-

lete command, this error code will be returned to the blocking command.
102 DNS name error Failed to resolve the host name (name error response from DNS server.
103 DNS timeout Timeout when performing a DNS lookup.
104 DNS command failed Other DNS error.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 125 (188)

Message Segmentation
General
Category: Extended

The maximum message size supported by the Anybus CompactCom 40 is normally 1524 bytes. In some ap-
plications a maximum message size of 255 bytes is supported, e.g. if an Anybus CompactCom 40 is to re-
place an Anybus CompactCom 30 without any changes to the application. The maximum socket message
size is 1472. To ensure support for socket interface messages larger than 255 bytes a segmentation protocol
is used.

The segmentation bits have to be set for all socket interface messages, in the commands where segmentation
can be used, whether the messages have to be segmented or not.

The segmentation protocol is implemented in the message layer and must not be confused with the fragmen-
tation protocol used on the serial host interface. Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

The module supports 1 (one) segmented message per instance

Command Segmentation
When a command message is segmented, the command initiator sends the same command header multiple
times. For each message, the data field is exchanged with the next data segment.

Command segmentation is used for the following commands (Socket Interface Object specific commands):

• Send

• Send To

When issuing a segmented command, the following rules apply:

• When issuing the first segment, FS must be set.

• When issuing subsequent segments, both FS and LS must be cleared.

• When issuing the last segment, the LF-bit must be set.

• For single segment commands (i.e. size less or equal to the message channel size), both FS and LS
must be set.

• The last response message contains the actual result of the operation.

• The command initiator may at any time abort the operation by issuing a message with AB set.

• If a segmentation error is detected during transmission, an error message is returned, and the current
segmentation message is discarded. Note however that this only applies to the current segment; previ-
ously transmitted segments are still valid.

Segmentation Control Bits (Command)
Bit Contents Meaning
0 FS Set if the current segment is the first segment
1 LS Set if the current segment is the last segment
2 AB Set if the segmentation shall be aborted
3...7 (reserved) Set to 0 (zero)

Segmentation Control Bits (Response)
Bit Contents Meaning
0... 7 (reserved) Ignore

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 126 (188)

Response Segmentation
When a response is segmented, the command initiator requests the next segment by sending the same com-
mand multiple times. For each response, the data field is exchanged with the next data segment.

Response segmentation is used for responses to the following commands (Socket Interface Object specific
commands):

• Receive

• Receive From

When receiving a segmented response, the following rules apply:

• In the first segment, FS is set.

• In all subsequent segment, both FS and LS are cleared.

• In the last segment, LS is set.

• For single segment responses (i.e. size less or equal to the message channel size), both FS and LS are
set.

• The command initiator may at any time abort the operation by issuing a message with AB set.

Segmentation Control bits (Command)
Bit Contents Meaning
0 (reserved) (set to zero)
1
2 AB Set if the segmentation shall be aborted
3...7 (reserved) Set to 0 (zero)

Segmentation Control bits (Response)
Bit Contents Meaning
0 FS Set if the current segment is the first segment
1 LS Set if the current segment is the last segment
2...7 (reserved) Set to 0 (zero)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 127 (188)

11.7 SMTP Client Object (09h)
Category
Extended

Object Description
This object groups functions related to the SMTP client.

Supported Commands

Object: Get_Attribute

Create

Delete

Send e-mail from file (see below)

Instance: Get_Attribute

Set_Attribute

Send e-mail (see below)

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“SMTP Client”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -
4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0006h
12 Success count Get UINT16 Reflects the no. of successfully sent messages
13 Error count Get UINT16 Reflects the no. of messages that could not be delivered

Instance Attributes (Instance #1)
Instances are created dynamically by the application.

Name Access Data Type Description
1 From Get/Set Array of

CHAR
e.g. “someone@somewhere.com”

2 To Get/Set Array of
CHAR

e.g.“ someone.else@anywhere.net”

3 Subject Get/Set Array of
CHAR

e.g. “Important notice”

4 Message Get/Set Array of
CHAR

e.g.“Shut down the system”

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 128 (188)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object

Description

This command creates an e-mail instance.

• Command Details

Field Contents Comments
CmdExt[0] (reserved) (set to zero)
CmdExt[1]

• Response Details

Field Contents Comments
CmdExt[0] (reserved) (ignore)
CmdExt[1]
Data[0] Instance number low byte
Data[1] high byte

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 129 (188)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object

Description

This command deletes an e-mail instance.

• Command Details

Field Contents Comments
CmdExt[0] E-mail instance number low byte
CmdExt[1] high byte

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 130 (188)

Command Details: Send E-mail From File
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command sends an e-mail based on a file in the file system.

The file must be a plain ASCII-file in the following format:

[To]
recipient

[From]
sender

[Subject]
email subject

Se [Headers]
extra headers, optional

[Message]
actual email message

• Command Details

Field Contents
CmdExt[0] (reserved, set to zero)
CmdExt[1]
Data[0... n] Path + filename of message file

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 131 (188)

Command Details: Send E-mail
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command sends the specified e-mail instance.

• Command Details

(no data)

• Response Details

(no data)

Object Specific Error Codes
Error Codes Meaning
1 SMTP server not found
2 SMTP server not ready
3 Authentication error
4 SMTP socket error
5 SSI scan error
6 Unable to interpret e-mail file
255 Unspecified SMTP error
(other) (reserved)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 132 (188)

11.8 Anybus File System Interface Object (0Ah)
Category
Extended

Object Description
This object provides an interface to the built-in file system. Each instance represents a handle to a file stream
and contains services for file system operations.

This provides the host application with access to the built-in file system of the module, e.g. when application
specific web pages are to be installed.

Instances are created and deleted dynamically during runtime.

This object is thoroughly described in Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 133 (188)

11.9 Network Ethernet Object (0Ch)
Category
Extended

Object Description

This object provides Ethernet-specific information to the application.

The object has three instances, each corresponding to a port:

Instance # Port
1 Internal port
2 Port 1
3 Port 2

Each instance provides statistic counters for the port. This information can e.g be presented on internal web
pages, if present, using the JSON script language.

Instance attribute #1 is reserved and used for backwards compatibility with earlier applications.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“Network Ethernet”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 3
4 Highest instance no. Get UINT16 3

Instance Attributes (Instance #1)
Name Access Data Type Description
1 MAC Address Get Array of

UINT8
Reserved, used for backwards compatibility.
(Device MAC address.)
(See also Ethernet Host Object (F9h), p. 159)

2 (Reserved)
3 (Reserved)
4 MAC Address Get Array of

UINT8
Device MAC address

5 Interface Counters Get Array of
UINT32

Array containing MIB-II interface counters (rfc1213)
See table below for array indices.

6 (Reserved)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 134 (188)

Instance Attributes (Instances #2 - #3)
Name Access Data Type Description
1 - 4 (Reserved)
5 Interface Counters Get Array of

UINT32
Array containing MIB-II interface counters (rfc1213)
See table below for array indices.

6 Media Counters Get Array of
UINT32

Array containing Ethernet-Like MIB counters for the port.
See table below for array indices.

Interface Counters
: Array indices of Interface Counters attribute (#5)

Index Name Description
0 In octets Octets received on the interface
1 In Unicast Packets Unicast packets received on the interface
2 In Non-Unicast Packets Non-unicast packets (multicast/broadcast) packets received on the interface
3 In Discards Inbound packets received on the interface but discarded
4 In Errors Inbound packets that contain errors (does not include In Discards)
5 In Unknown Protos Inbound packets with unknown protocol
6 Out Octets Octets transmitted on the interface
7 Out Unicast packets Unicast packets transmitted on the interface
8 Out Non-Unicast Packets Non-unicast (multicast/broadcast) packets transmitted on the interface
9 Out Discards Outbound packets discarded
10 Out Errors Outbound packets that contain errors

Media Counters
: Array indices of Media Counters attribute (#6)

Index Name Description
0 AlignmentErrors; Frames received that are not an integral number of octets in length
1 FCSErrors; Frames received that do not pass the FCS check
2 SingleCollisions; Successfully transmitted frames which experienced exactly one collision
3 MultipleCollisions; Successfully transmitted frames which experienced more than one collision
4 SQETestErrors; Number of times SQE test error is generated
5 DeferredTransmissions; Frames for which first transmission attempt is delayed because the medium is

busy
6 LateCollisions; Number of times collision is detected later than 512 bit-times into the transmis-

sion of a packet
7 ExcessiveCollisions; Frames for which transmission fails due to excessive collisions
8 lMACTransmitErrors; Frames for which transmission fails due to an internal MAC sublayer transmit

error
9 lCarrieSenseErrors; Times that the carrier sense condition was lost or never asserted when at-

tempting to transmit a frame
10 lFrameTooLong; Frames received that exceed the maximum permitted frame size
11 lMACRecieveErrors; Frames for which reception on an interface fails due to an internal MAC sub-

layer receive error

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 135 (188)

11.10 CIP Port Configuration Object (0Dh)
Category
Extended

Object Description
This object is used to populate and enumerate the CIP Port Object (see Port Object (F4h), p. 86) on the net-
work side. Basically, this is a matter of creating and updating instances and attributes which shall represent a
CIP Port within the host application. This process is necessary in case support for Unconnected CIP Routing
has been enabled (see EtherNet/IP Host Object (F8h), p. 150, Instance Attribute #17).

Each instance within this object corresponds to an instance in the CIP Port Object. The object supports up to
8 instances, where instance #1 is dedicated to the local TCP port, enabling the host application to implement
up to 7 additional ports. Instance #1 will automatically be populated with default values, however it is possible
for the host application to customize instance attributes #2 and #4.

Apart from attribute #7, it is possible to write to the instance attributes only during setup. The host application
is responsible for keeping instance attribute #7 updated for all ports located within the host application.

Note that the module does not take over the host application responsibility for error control; the
module will not verify that the data set by the host application is correct.

Supported Commands

Object: Get_Attribute

Create

Delete

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“Network Ethernet”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -
4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0008h

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 136 (188)

Instance Attributes (Instance #1)
Name Access Data Type Description
1 Port Type Set UINT16 Enumerates the port (See CIP specification, available from www.

odva.org)
2 Port Number Set UINT16 CIP port number associated with this port
3 Link Path Set Array of

UINT8
Logical path segments which identify the object for this port.

4 Port Name Set Array of
CHAR

String (max. no. of characters is 64) which names the port.

5 - - - (reserved)
6 - - - (reserved)
7 Node Address Set Array of

UINT8
Node number of this device on port. The data type restricts the
range to a Port Segment. The encoded port number must match
the value specified in attribute #2.
A device which does not have a node number on the port can
specify a zero length node address within the Port Segment (i.e.
10h 00h).
In case the node address changes during runtime, the host ap-
plication is responsible for updating this attribute as well.

8 Port Node Range Set Struct of:
UINT16
(Min)
UINT16
(Max)

Minimum and maximum node number on port.
Support for this attribute is conditional; the attribute shall be sup-
ported provided that the node number can be reported within the
range of the data type (e.g. DeviceNet). If not (as is the case
with networks such as EtherNet/IP which uses a 4 byte IP ad-
dress), the attribute shall not be supported.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

http://www.odva.org
http://www.odva.org

Anybus Module Objects 137 (188)

11.11 Functional Safety Module Object (11h)
Category
Extended

Object Description
This object contains information provided by the Safety Module connected to the Anybus CompactCom mod-
ule. Please consult the manual for the Safety Module used, for values of the attributes below.

Supported Commands

Object: Get_Attribute

Error_Confirmation

Set_IO_Config_String

Get_Safety_Output_PDU

Get_Safety_Input_PDU

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“Functional Safety Module”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Description
1 State Get UINT8 Current state of the Safety Module

Please consult the manual for the Safety Module used.
2 Vendor ID Get UINT16 Identifies vendor of the Safety Module.

E.g. 0001h (HMS Industrial Networks)
Please consult the manual for the Safety Module used.

3 IO Channel ID Get UINT16 Describes the IO Channels that the Safety Module is equipped
with.
Please consult the manual for the Safety Module used.

4 Firmware version Get Struct of
UINT8
(Major)
UINT8
(Minor)
UINT8
(Build)

Safety Module firmware version.
Format: version “2.18.3” would be represented as: first byte =
0x02, second byte = 0x12, third byte = 0x03.

5 Serial number Get UINT32 32 bit number, assigned to the Safety Module at production.
Please consult the manual for the Safety Module used.

6 Output data Get Array of
UINT8

Current value of the Safety Module output data, i.e. data FROM
the network
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

7 Input data Get Array of
UINT8

Current value of the Safety Module input data, i.e. data sent TO
the network.
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 138 (188)

Name Access Data Type Description
8 Error counters Get Struct of

UINT16
(ABCC DR)
UINT16
(ABCC SE)
UINT16 (SM
DR)
UINT16 (SM
SE)

Error counters (each counter stops counting at FFFFh)
ABCC DR: Responses (unexpected) from the Safety Mod-

ule, discarded by the Anybus CompactCom
module.

ABCC SE: Serial reception errors detected by the Anybus
CompactCom module.

SM DR: Responses (unexpected) from the Anybus
CompactCom module, discarded by the Safety
Module.

SM SE: Serial reception errors detected by the Safety
Module.

9 Event log Get Array of
UINT8

Latest Safety Module event information (if any) is logged to this
attribute. Any older event information is erased when a new
event is logged.
For evaluation by HMS support.

10 Exception
information

Get UINT8 If the Exception Code in the Anybus object is set to “Safety com-
munication error” (09h), additional exception information is pre-
sented here, see table below.

11 Bootloader version Get Struct of
UINT8 Major
UINT8 Minor

Safety Module bootloader version.
Format: version “2.12” would be represented as: first byte =
0x02, second byte = 0x0C

Exception Information
If Exception Code 09h is set in the Anybus object, there is an error regarding the functional safety module in
the application. Exception information is presented in instance attribute #10 according to this table:

Value Exception Information
00h No information
01h Baud rate not supported
02h No start message
03h Unexpected message length
04h Unexpected command in response
05h Unexpected error code
06h Safety application not found
07h Invalid safety application CRC
08h No flash access
09h Answer from wrong safety processor during boot loader communication
0Ah Boot loader timeout
0Bh Network specific parameter error
0Ch Invalid IO configuration string
0Dh Response differed between the safety microprocessors (e.g. different module types)
0Eh Incompatible module (e.g. supported network)
0Fh Max number of retransmissions performed (e.g. due to CRC errors)
10h Firmware file error
11h The cycle time value in attribute #4 in the Functional Safety Host Object can not be used with the current

baud rate
12h Invalid SPDU input size in start-up telegram
13h Invalid SPDU output size in start-up telegram
14h Badly formatted input SPDU
15h Anybus to safety module initialization failure

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 139 (188)

Command Details: Error_Confirmation
Category

Extended

Details

Command Code 10h

Valid for: Object

Description

When the Safety Module has entered the Safe State, for any reason, it must receive an error confirmation be-
fore it can leave the Safe State. With this command it is possible to reset all safety channels of the safety
which, for any reason, are in the Safe State at the same time. The application issues this command to the
Anybus CompactCom module, when an error has been cleared by for example an operator. The Anybus
CompactCom forwards the command to the Safety Module.

The channel Safe State can also be confirmed by the safety PLC or by the safety module.

With this command

• Command Details

(no data)

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 140 (188)

Command Details: Set_IO_Config_String
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command is sent from the host application when there is a need to change the default configuration of
the safety inputs and outputs. This string is used by networks where there are no other means (e.g. PLC or
some other tool) to provide the configuration to the safety module. Consult the specification of the safety mod-
ule for more information. The byte string passed is generated by HMS and need to be passed unmodified us-
ing this command.

Information about this string is located in the specification of the safety module to which the string shall be
sent.

• Command Details

Field Contents
CmdExt[0] (not used)
CmdExt[1]
Data[0... n] Data (byte string)

The data consists of an IO configuration string, where the data format depends on the safety network.

• Response Details

(no data)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 141 (188)

Command Details: Get_Safety_Output_PDU
Category

Extended

Details

Command Code 12h

Valid for: Object

Description

This command can be issued by the application to get the complete safety output PDU sent by the PLC. The
Anybus CompactCom 40 EtherNet/IP will respond with the complete safety PDU, that the application then
has to interpret.

• Command Details

(no data)

• Response Details

Field Contents
CmdExt[0] (not used)
CmdExt[1]
Data[0... n] Safety PDU from PLC

Command Details: Get_Safety_Input_PDU
Category

Extended

Details

Command Code 13h

Valid for: Object

Description

This command can be issued by the application to get the complete safety input PDU sent by the safety mod-
ule. The Anybus CompactCom 40 EtherNet/IP will respond with the complete safety PDU, that the application
then has to interpret.

• Command Details

(no data)

• Response Details

Field Contents
CmdExt[0] (not used)
CmdExt[1]
Data[0... n] Safety PDU from safety module

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Anybus Module Objects 142 (188)

Object Specific Error Codes
Error Code Description Comments
01h The safety module rejected a

message.
Error code sent by safety module is found in MsgData[2] and MsgDa-
ta[3].

02h Message response from the safety
module has incorrect format (for ex-
ample, wrong length).

-

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 143 (188)

12 Host Application Objects
12.1 General Information

This chapter specifies the host application object implementation in the module. The objects
listed here may optionally be implemented within the host application firmware to expand the
EtherNet/IP implementation.

Standard Objects:

• Assembly Mapping Object (EBh) - (see Anybus CompactCom 40 Software Design Guide)

• Modular Device Object (ECh) - (see Anybus CompactCom 40 Software Design Guide)

• Sync Object (EEh), p. 149

• Energy Control Object (F0h) - (see Anybus CompactCom 40 Software Design Guide)

• Application Data Object (FEh) - (see Anybus CompactCom 40 Software Design Guide)

• Application Object (FFh) - (see Anybus CompactCom 40 Software Design Guide)

Network Specific Objects:

• Functional Safety Object (E8h), p. 144

• Application File System Interface Object (EAh), p. 146

• CIP Identity Host Object (EDh), p. 147

• EtherNet/IP Host Object (F8h), p. 150

• Ethernet Host Object (F9h), p. 159

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 144 (188)

12.2 Functional Safety Object (E8h)
Category
Extended

Object Description

Do not implement this object if a safety module is not used.

This object specifies the safety settings of the application. It is mandatory if Functional Safety is to be sup-
ported and a Safety Module is connected to the Anybus CompactCom module.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“Functional Safety”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Default

Value
Comment

1 Safety enabled Get BOOL - When TRUE, enables communication with the
Safety Module.
Note: If functional safety is not supported, this
attribute must be set to FALSE.

2 Baud Rate Get UINT32 1020 kbit/s This attribute sets the baud rate of the commu-
nication in bits/s between the Anybus Compact-
Com and the Safety Module.
Valid values:

• 625 kbit/s

• 1000 kbit/s

• 1020 kbit/s (default)
Any other value set to this attribute, will cause
the module to enter the EXCEPTION state.
The attribute is optional. If not implemented, the
default value will be used.
Note: The host application shall never imple-
ment this attribute when using the IXXAT Safe
T100.

3 (reserved)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 145 (188)

Name Access Data Type Default
Value

Comment

4 Cycle Time Get UINT8 - Communication cycle time between the Anybus
and the Safety module in milliseconds.
Note: The host application shall never imple-
ment this attribute when using the IXXAT Safe
T100.
Valid values:

• 2 ms

• 4 ms

• 8 ms

• 16 ms
If another value is set in this attribute the Any-
bus will enter Exception state.
Optional attribute; If not implemented the mini-
mum cycle time for the chosen baud rate will be
used:

• 2 ms for 1020 kbit/s

• 2 ms for 1000 kbit/s

• 4 ms for 625 kbit/s
The Anybus CompactCom validates the cycle
time according to the minimum values above. If
e.g. baud rate is 625 kbit/s and the cycle time is
set to 2 ms the Anybus CompactCom will enter
the EXCEPTION state.

5 FW upgrade in
progress

Set BOOL False Indicates if the Anybus CompactCom is upgrad-
ing the connected Safety module firmware. This
means that the Anybus CompactCom will stay
in the NW_INITstate longer than normal.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 146 (188)

12.3 Application File System Interface Object (EAh)
Category
Extended

Object Description
This object provides an interface to the built-in file system. Each instance represents a handle to a file stream
and contains services for file system operations. This allows the user to download software through the FTP
server to the application. The application decides the available memory space.

This object is thoroughly described in Anybus CompactCom 40 Software Design Guide.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 147 (188)

12.4 CIP Identity Host Object (EDh)
Category
Extended

Object Description
This object allows for applications to support additional CIP identity instances. It is used to provide additional
product identity information, e.g. concerning the software installed.

The first instance in the CIP identity object will not change its behavior. When implementing instances in the
CIP identity host object, they will be mapped to the CIP identity object starting at instance 2. Instance no. 1 in
the CIP identity host object will be mapped to instance no. 2 in the CIP identity object and so on.

See also ...

• Identity Object (01h), p. 64 (CIP object)

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Get_Attribute_All

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“CIP Identity”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Depends on application
4 Highest instance no. Get UINT16 Depends on application

Instance Attributes (Instance #1)
Name Access Data Type Description
1 Vendor ID Get UINT16 These values replace the values for the CIP identity object in-

stance #2 and upwards.
See also...
Identity Object (01h), p. 64 (CIP-object)

2 Device Type Get UINT16
3 Product Code Get UINT16
4 Revision Get struct of:

UINT8 Ma-
jor UINT8
Minor

5 Status Get UNIT16
6 Serial Number Get UINT32
7 Product Name Get Array of

CHAR

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 148 (188)

Command Details: Get_Attribute_All
Category

Extended

Details

Command Code: 10h

Valid for: Object

Description

This service must be implemented by the application for all instances that exist in the CIP identity host object.
If identity data is requested from the network the Anybus module will issue this command to the application.
The application will then respond with a message containing a struct of all attributes in the requested
instance.

• Command Details

(no data)

• Response Details

Field Contents Comments
MsgData[0,
1]

Vendor ID ABCC CIP identity data

MsgData[2,
3]

Device type

MsgData[4,
5]

Product code

MsgData[6] Major revision
MsgData[7] Minor revision
MsgData
[8,9]

Status

MsgData[10
.. .13]

Serial number

MsgData[14
.... n]

Product name

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 149 (188)

12.5 Sync Object (EEh)
Category
Extended

Object Description
The Anybus CompactCom 40 EtherNet/IP does not support CIP Sync. This object is only used to store the
cycle time for the last established IO connection that consumes data.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Instance Attributes (Instance #1)
The attributes are represented on EtherNet/IP as follows:

Name Access Data Type Description
1 Cycle time Get/Set UINT32 The RPI for the last established IO connection that consumes

data (O→T RPI)
2–8 (not implemented)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 150 (188)

12.6 EtherNet/IP Host Object (F8h)
Category
Basic, Extended

Object Description
This object implements EtherNet/IP specific features in the host application. Note that this object must not be
confused with the Ethernet Host Object, see Ethernet Host Object (F9h), p. 159.

The implementation of this object is optional; the host application can support none, some, or all of the attrib-
utes specified below. The module will attempt to retrieve the values of these attributes during startup; if an at-
tribute is not implemented in the host application, simply respond with an error message (06h, “Invalid
CmdExt[0]”). In such case, the module will use its default value.

If the module attempts to retrieve a value of an attribute not listed below, respond with an error message
(06h, “Invalid CmdExt[0]”).

Note that some of the commands used when accessing this object may require segmentation. For more infor-
mation, see Message Segmentation, p. 125.

If the module is configured to use EIP QuickConnect functionality, the EDS file has to be changed. As the
EDS file is changed, the identity of the module has to be changed and the module will require certification..

See also ...

• Identity Object (01h), p. 64 (CIP object)

• Assembly Object (04h), p. 68 (CIP object)

• Port Object (F4h), p. 86 (CIP object)

• CIP Port Configuration Object (0Dh), p. 135

• Anybus CompactCom 40 Software Design Guide, “Error Codes”

Supported Commands

Object: Get_Attribute

Process_CIP_Object_Request

Set_Configuration_Data

Process_CIP_Routing_Request

Get_Configuration_Data

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of

CHAR
“EtherNet/IP”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 151 (188)

Instance Attributes (Instance #1)
Basic

Name Access Data Type Default Value Comment
1 Vendor ID Get UINT16 005Ah These values are set in the Identity Ob-

ject (CIP) at startup.
See also...

• Network Identity, p. 11

• Identity Object (01h), p. 64
Please note that changing any of these
attributes requires a new Vendor ID.

2 Device Type Get UINT16 002Bh
3 Product Code Get UINT16 0037h
4 Revision Get struct of:

UINT8 Ma-
jor UINT8
Minor

(software revision)

5 Serial Number Get UINT32 (set at production)
6 Product Name Get Array of

CHAR
“Anybus CompactCom
40 EtherNet/IP(TM)”

Extended

Name Access Data Type Default
Value

Comment

7 Producing Instance
No.

Get Array of
UINT16

- The values in this array are the EtherNet/IPAssembly
instance numbers that matches the host application As-
sembly Mapping Ojbect instances that are listed in at-
tribute #11 (Write PD Instance List). If the Assembly
Mapping Object is not implemented, one element in this
array is allowed, to set the producing instance number.
The maximum number of entries in the array is 6.
See “Multiple Assembly Instances” below for an
example.

8 Consuming Instance
No.

Get Array of
UINT16

- The values in this array are the EtherNet/IPAssembly
instance numbers that matches the host application As-
sembly Mapping Ojbect instances that are listed in at-
tribute #12 (Read PD Instance List). If the Assembly
Mapping Object is not implemented, one element in this
array is allowed, to set the consuming instance number.
The maximum number of entries in the array is 6.
See “Multiple Assembly Instances” below for an
example.

9 Enable communica-
tion settings from Net

Get BOOL True Value Meaning
True Can be set from network
False Cannot be set from network
See also ...

• TCP/IP Interface Object (F5h), p. 88 (CIP-object)

• Ethernet Link Object (F6h), p. 92 CIP-object)

• Network Configuration Object (04h), p. 101(Any-
bus Module Object)

11 Enable CIP
forwarding

Get BOOL False Value Meaning
True Requests to unknown CIP objects and un-

known assembly object instances are
routed to the application.

False Requests to unknown CIP objects and un-
known assembly object instances are not
routed to the application.

See also.command deails for Process _CIP_Object_
Request below

12 Enable Parameter
Object

Get BOOL True Value Meaning
True Enable CIP Parameter Object
False Disable CIP Parameter Object

13 Input-Only heartbeat
instance number

Get UINT16 0003h See “Instance 03h Attributes (Heartbeat, Input-Only)” in
Assembly Object (04h), p. 68 (CIP-object).

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 152 (188)

Name Access Data Type Default
Value

Comment

14 Listen-Only heart-
beat instance
number

Get UINT16 0004h See “Instance 04h Attributes (Heartbeat, Listen-Only)”
in Assembly Object (04h), p. 68 (CIP-object).

15 Assembly object
Configuration in-
stance number

Get UINT16 0005h See “Instance 05h Attributes (Configuration Data)” in
Assembly Object (04h), p. 68 (CIP-object).

16 Disable Strict IO
Match

Get BOOL False If true, the module will accept Class1 connection re-
quests that have sizes that’s less than or equal to the
configured IO sizes.

17 Enable unconnected
routing

Get BOOL False If true, the module enables unconnected CIP routing.
This also triggers an initial upload of the contents of the
CIP Port Mapping object.

18 Input-Only extended
heartbeat instance
number

Get UINT16 0006h See “Instance 06h Attributes (Heartbeat, Input-Only Ex-
tended)” in Assembly Object (04h), p. 68 (CIP-object).

19 Listen-Only extended
heartbeat instance
number

Get UINT16 0007h See “Instance 06h Attributes (Heartbeat, Listen-Only
Extended)” in Assembly Object (04h), p. 68 (CIP-
object).

20 Interface label port 1 Get Array of
CHAR

Port 1 The value of this attribute is used to change the inter-
face label for Ethernet Link Object Instance #1

21 Interface label port 2 Get Array of
CHAR

Port 2 The value of this attribute is used to change the inter-
face label for Ethernet Link Object Instance #2

22 Interface label inter-
nal port

Get Array of
CHAR

Internal The value of this attribute is used to change the inter-
face label for Ethernet Link Object Instance #3

23
-
25

(reserved)

26 Enable EtherNet/IP
QuickConnect

Get BOOL False Value Meaning
True EtherNet/IP QuickConnect functionality

enabled.
False False EtherNet/IP QuickConnect function-

ality disabled.
If the module is configured to use EIP QuickConnect
functionality, the EDS file has to be changed. As the
EDS file is changed, the identity of the module has to
be changed and the module will require certification.

27
-
28

(reserved)

29 Ignore Sequence
Count Check

Get BOOL False Setting this attribute to “true” makes the module ignore
the Sequence Count Check for consumed Class 1 data.
This means that all data, not just changed/new data, re-
ceived from the Originator, will be copied to the applica-
tion. Copying all data and not just changed data is a
violation of the CIP specification. It will also affect the
performance of the module.
Use precaution when setting this flag to“true”.
HMS Industrial Networks AB will do NO performance
measurements and states NO guarantees about how
performance will be affected when copying all data.

30 ABCC ADI Object
Number

Get UINT16 00A2h This attribute either changes the object number of the-
ADI Object (CIP object) or disables the ADI Object (CIP
object). Valid object numbers are within the vendor spe-
cific ranges (0064h - 00C7h and 0300h - 04FFh). Any
other value will disable the ADI object.

31 Enable DLR Get BOOL True Value Meaning
True DLR functionality enabled
False DLR functionality disabled

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 153 (188)

Multiple Assembly Instances
The Assembly Mapping Object has two arrays on class level (Write PD Instance List and Read PD Instance
List) listing instances defined by the application. The arrays of attributes 7 and 8 in the EtherNet/IP host object
(Producing Instance Number and Consuming Instance number) are bound to the instance lists in the Assem-
bly Mapping Object. The arrays list the corresponding CIP instance numbers representing each assembly in-
stance defined by the application.

For more information, see

• Using the Assembly Mapping Object (EBh), p. 19

• Anybus CompactCom 40 Software Design Guide, “Assembly Mapping Object (EBh)”

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 154 (188)

Command Details: Process_CIP_Object_Request
Category

Extended

Details

Command Code: 10h

Valid for: Object

Description

By setting the ‘Enable CIP Request Forwarding’-attribute (#11), all requests to unimplemented CIP-objects
and unknown assembly object instances, will be forwarded to the host application through this command.
The application then has to evaluate the request and return a proper response. The module supports one
CIP-request; additional requests will be rejected by the module.

Note that since the telegram length on the host interface is limited, the request data size must not exceed 255
bytes. If it does, the module will send a ‘resource unavailable’ response to the originator of the request and
the message will not be forwarded to the host application.

This command is similar - but not identical - to the ‘Process_CIP_Request’-command in the Anybus Com-
pactCom 40 DeviceNet.

• Command Details

Field Contents Comments
CmdExt[0] CIP Service Code CIP service code from original CIP request
CmdExt[1] Request Path Size Number of 16-bit words in the Request Path field
MsgData[0... m] Request Path CIP EPATH (Class, Instance, Attr. etc.)
MsgData[m... n] Request Data Service-specific data

• Response Details

Field Contents Comments
CmdExt[0] CIP Service Code (Reply bit set)
CmdExt[1] 00h (reserved, set to zero)
MsgData[0] General Status CIP General Status Code
MsgData[1] Size of Additional Status Number of 16-bit words in Additional Status array
MsgData[2... m] Additional Status Additional Status, if applicable
MsgData[m... n] Response data Actual response data, if applicable

When using this functionality, make sure to implement the common CIP Class Attribute (attribute
#1, Revision) for all objects in the host application firmware. Failure to observe this will prevent
the module from successfully passing conformance tests.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 155 (188)

Command Details: Set_Configuration_Data
Category

Extended

Details

Command Code: 11h

Valid for: Object

Description

If the data segment in the CIP “Forward_Open” service contains Configuration Data, this will be forwarded to
the host application through this command. If implemented, the host application should evaluate the request
and return a proper response. Segmentation is used, see “Message Segmentation” on page 189 for more in-
formation. The maximum total amount of configuration data that will be accepted by the module is 458 bytes.

This command must be implemented in order to support Configuration Data. If not implemented, the CIP “For-
ward_Open”-request will be rejected by the module.

• Command Details

Field Contents Comments
CmdExt[0] - (reserved, ignore)
CmdExt[1] Segmentation Control bits SeeMessage Segmentation, p. 125
MsgData[0 - 1] Producing connection point Producing connection point, requested by the originator.
MsgData[2 - 3] Consuming connection point Consuming connecition point, requested by the originator.
MsgData[4... n] Data Actual configuration data

MsgData[0 - 1]and MsgData[2 - 3] can both be 0. Normally, the Set_Configuration_Data command is
sent to the application when an I/O connection is setup on the network. Producing connection point and
consuming connection point are available and will be forwarded with the command. But if the configura-
tion data originates from a set attribute single request or a not matching NULL forward open request,
there is no information on the connection points and 0 (zero) will be forwarded to the application.

• Response Details (Success)

Field Contents Comments
CmdExt[0] 00h (reserved, set to zero)
CmdExt[1] 00h (reserved, set to zero)

• Response Details (Error)

Field Contents Comments
CmdExt[0] 00h (reserved, set to zero)
CmdExt[1] 00h (reserved, set to zero)
MsgData[0] Error code Anybus error code
MsgData[1] Extended error code If the Anybus error code is set to FFh, the extended error

code shall be translated as shown in the table below.
MsgData[2... 3] Index If the Extended error code is set to 02h (invalid configura-

tion), this parameter points to the attribute that failed.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 156 (188)

Extended Error Code

If the Error code equals FFh (Object specific error), the extended code will be translated as below:

Code Contents CIP no. CIP status code Additional Information
01h Ownership

conflict
01h Connection

failure
The configuration data was supplied in a forward open request.

10h Device State
conflict

The configuration data was supplied in a set request to the As-
sembly object.

02h Invalid
configuration

09h Bad attribute
data

CIP extended error code: Use value from MsgData[2 - 3]. The
extended error code shall only be used if the request originated
from a Forward Open request, not for explicit set requests.

• Connection Manager (06h), p. 71 (CIP object)

• Message segmentation

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 157 (188)

Command Details: Process_CIP_Routing_Request
Category

Extended

Details

Command Code: 12h

Valid for: Object

Description

The module will strip the first path within the “Unconnected_Send” service and evaluate whether or not it’s
possible to continue with the routing (e.g. check that the requested port exists within the port object). If the
stripped path was the last path the contents delivered to the application will be the CIP request sent to the
destination node, otherwise it will be an “Unconnected_Send” service with updated route path information.

The module supports one pending request. Additional requests will be rejected by the module.

Please not that since the telegram length on the host interface is limited, the data must not exceed 255 bytes
in length. If it does, the module will reject the originator of the request (“Resource unavailable”), and this com-
mand will not be issued towards the host application.

• Command Details

Field Contents Comments
CmdExt[0] - (reserved, ignore)
CmdExt[1] - (reserved, ignore)
MsgData[0... n] Destination Path Destination path encoded as an EPATH.
MsgData[n+1] Time_tick Valid after timeout parameters have been updated
MsgData[n+2] Time-out_ticks Valid after timeout parameters have been updated
MsgData[n+3...
m]

CIP message CIP message to route

• Response Details

Field Contents Comments
CmdExt[0] 00h (reserved, set to zero)
CmdExt[1] 00h (reserved, set to zero)
MsgData[0] CIP Service Actual CIP service code, response bit set
MsgData[1] 00h (reserved, set to zero)
MsgData[2] General Status Actual CIP General status code
MsgData[3] Size of Additional Status No. of 16-bit words in Additional Status Array
MsgData[4... n] Additional Status Array Additional status, if applicable
MsgData[n+1...
m]

Response Data Actual response data

See also..

• Port Object (F4h), p. 86 (CIP object)

• CIP Port Configuration Object (0Dh), p. 135

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 158 (188)

Command Details: Get_Configuration_Data
Category

Extended

Details

Command Code: 13h

Valid for: Object

Description

If the configuration data is requested from the network, the Anybus will issue this command to the application.
The application shall send the stored configuration data in the response message.

Segmentation is used since the telegram length on the host interface is limited. The maximum total amount of
configuration data that will be accepted by the module is 458 bytes.

This command must be implemented in order to support Configuration Data. If not implemented, the request
will be rejected by the Anybus module.

• Command Details

Field Contents Comments
CmdExt[0] 00h -

CmdExt[1] 00h -

MsgData[0... n] - No extended message data

• Response Details (Success)

Field Contents Comments
CmdExt[0] 00h (reserved, set to zero)
CmdExt[1] Segmentation Control bits SeeMessage Segmentation, p. 125
MsgData[0 - n] Status Configuration data from the application

• Response Details (Error)

Field Contents Comments
CmdExt[0] 00h (reserved, set to zero)
CmdExt[1] Segmentation Control bits SeeMessage Segmentation, p. 125
MsgData[0] Status Anybus protocol error code

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 159 (188)

12.7 Ethernet Host Object (F9h)
Object Description
This object implements Ethernet features in the host application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value
1 Name Get Array of CHAR “Ethernet”
2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
• If an attribute is not implemented, the default value will be used.

• The module is preprogrammed with a valid MAC address. To use that address, do not implement attrib-
ute #1.

• Do not implement attributes #9 and #10, only used for PROFINET devices, if the module shall use the
preprogrammed MAC addresses.

• If new MAC addresses are assigned to a PROFINET device, these addresses (in attributes #1, #9, and
#10) have to be consecutive, e.g. (xx:yy:zz:aa:bb:01), (xx:yy:zz:aa:bb:02), and (xx:yy:zz:aa:bb:03) with
the first five octets not changing.

Name Ac-
cess

Data Type Default
Value

Comment

1 MAC address Get Array of
UINT8

- 6 byte physical address value; overrides the preprog-
rammed Mac address. Note that the new Mac address
value must be obtained from the IEEE.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

2 Enable HICP Get BOOL True
(Enabled)

Enable/Disable HICP

3 Enable Web
Server

Get BOOL True
(Enabled)

Enable/Disable Web Server
(Not used if Transparent Ethernet is enabled.)

4 (reserved) Reserved for Anybus CompactCom 30 applications.
5 Enable Web ADI

access
Get BOOL True

(Enabled)
Enable/Disable Web ADI access
(Not used if Transparent Ethernet is enabled.)

6 Enable FTP
server

Get BOOL True
(Enabled)

Enable/Disable FTP server
(Not used if Transparent Ethernet is enabled.)

7 Enable admin
mode

Get BOOL False
(Disabled)

Enable/Disable FTP admin mode
(Not used if Transparent Ethernet is enabled.)

8 Network Status Set UINT16 - See below.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 160 (188)

Name Ac-
cess

Data Type Default
Value

Comment

9 Port 1 MAC
address

Get Array of
UINT8

- Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 1 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

10 Port 2 MAC
address

Get Array of
UINT8

- Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 2 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

11 Enable ACD Get BOOL True
(Enabled)

Enable/Disable ACD protocol.
If ACD functionality is disabled using this attribute, the
ACD attributes in the CIP TCP/IP object (F5h) are not
available.

12 Port 1 State Get ENUM 0 (Enabled) The state of Ethernet port 1.

• This attribute is not read by EtherCAT devices, where
Port 1 is always enabled.

• This attribute is not used by PROFINET

00h: Enabled
01h: Disabled.

The port is treated as existing. References to
the port can exist, e.g. in network protocol or
on website.

13 Port 2 State Get ENUM 0 (Enabled) The state of Ethernet port 2.

• This attribute is not read by EtherCAT devices, where
Port 2 is always enabled.

• This attribute is not used by PROFINET

00h: Enabled
01h: Disabled.

The port is treated as existing. References to
the port can exist, e.g. in network protocol or
on website.

02h: Inactive.
The attribute is set to this value for a device
that only has one physical port. All two-port
functionality is disabled. No references can
be made to this port.
Note: This functionality is available for Ether-
net/IP and Modbus-TCP devices.

14 (reserved)
15 Enable reset

from HICP
Get BOOL 0 = False Enables the option to reset the module from HICP.

16 IP configuration Set Struct of:
UINT32 (IP
address)
UINT32
(Subnet
mask)
UINT32
(Gateway)

N/A Whenever the configuration is assigned or changed, the
Anybus CompactCom module will update this attribute.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 161 (188)

Name Ac-
cess

Data Type Default
Value

Comment

17 IP address byte
0–2

Get Array of
UINT8[3]

[0] = 192
[1] = 168
[2] = 0

First three bytes in IP address. Used in standalone shift
register mode if the configuration switch value is set to 1-
245. In that case the IP address will be set to:
Y[0].Y[1].Y[2].X
Where Y0-2 is configured by this attribute and the last
byte X by the configuration switch.

18 Ethernet PHY
Configuration

Get Array of
BITS16

0x0000 for
each port

Ethernet PHY configuration bit field. The length of the ar-
ray shall equal the number of Ethernet ports of the prod-
uct. Each element represents the configuration of one
Ethernet port (element #0 maps to Ethernet port #1, ele-
ment #1 maps to Ethernet port #2 and so on).
Note: Only valid for EtherNet/IP and Modbus-TCP
devices.

Bit 0: Auto negotiation fallback duplex
0 = Half duplex
1 = Full duplex

Bit 1–15: Reserved
20 SNMP read-only

community string
Get Array of

CHAR
“public” Note: This attribute is only valid for PROFINET devices.

Sets the SNMP read-only community string. Max length is
32.

21 SNMP read-write
community string

Get Array of
CHAR

“private” Note: This attribute is only valid for PROFINET devices.
Sets the SNMP read-write community string. Max length
is 32.

22 DHCP Option 61
source

Get ENUM 0 (Disabled) Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

23 DHCP Option 61
generic string

Get Array of
UINT8

N/A Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

24 Enable DHCP
Client

Get BOOL 1 = True Note: This attribute is currently valid for Ethernet/IP and
PROFINET devices.
Enable/disable DHCP Client functionality
0: DHCP Client functionality is disabled
1: DHCP Client functionality is enabled

Network Status
This attribute holds a bit field which indicates the overall network status as follows:

Bit Contents Description Comment
0 Link Current global link status

1= Link sensed
0= No link

1 IP established 1 = IP address established
0 = IP address not established

2 (reserved) (mask off and ignore)
3 Link port 1 Current link status for port 1

1 = Link sensed
0 = No link

EtherCATonly: This link status indicates whether
the Anybus CompactCom is able to communicat
using Ethernet over EtherCAT (EoE) or not. That
is, it indicates the status of the logical EoE port
link and is not related to the link status on the
physical EtherCAT ports.

4 Link port 2 Current link status for port 2
1 = Link sensed
0 = No link

Not used for EtherCAT

5... 15 (reserved) (mask off and ignore)

DHCP Option 61 (Client Identifier)

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Host Application Objects 162 (188)

Only valid for EtherNet/IP devices

The DHCP Option 61 (Client Identifier) allow the end-user to specify a unique identifier, which has to be
unique within the DHCP domain.

Attribute #22 (DHCP Option 61 source) is used to configure the source of the Client Identifier. The table below
shows the definition for the Client identifier for different sources and their description.

Value Source Description
0 Disable The DHCP Option 61 is disabled. This is the default value if the attribute is not imple-

mented in the application.
1 MACID The MACID will be used as the Client Identifier
2 Host Name The configured Host Name will be used as the Client Identifier
3 Generic String Attribute #23 will be used as the Client Identifier

Attribute #23 (DHCP Option 61 generic string) is used to set the Client Identifer when Attribute #22 has been
set to 3 (Generic String). Attribute #23 contains the Type field and Client Identifier and shall comply with the
definitions in RFC 2132. The allowed max length that can be passed to the module via attribute #23 is 64
octets.

Example:

If Attribute #22 has been set to 3 (Generic String) and Attribute #23 contains 0x01, 0x00, 0x30, 0x11, 0x33,
0x44, 0x55, the Client Identifier will be represented as an Ethernet Media Type with MACID
00:30:11:33:44:55.

Example 2:

If Attribute #22 has been set to 2 (Host Name) Attribute #23 will be ignored and the Client Identifier will be the
same as the configured Host Name.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix A: Categorization of Functionality 163 (188)

A Categorization of Functionality
The objects, including attributes and services, of the Anybus CompactCom and the application
are divided into two categories: basic and extended.

A.1 Basic
This category includes objects, attributes and services that are mandatory to implement or to
use. They will be enough for starting up the Anybus CompactCom and sending/receiving data
with the chosen network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this
category.

A.2 Extended
Use of the objects in this category extends the functionality of the application. Access is given
to the more specific characteristics of the industrial network, not only the basic moving of data
to and from the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the avail-
able network functionality is enabled and accessible, access to the specification of the industrial
network may be required.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix B: Implementation Details 164 (188)

B Implementation Details
B.1 SUP-Bit Definition

The supervised bit (SUP) indicates that the network participation is supervised by another net-
work device. In the case of EtherNet/IP, this means that the SUP-bit is set when one or more
CIP (Class 1 or Class 3) connections has been opened towards the module.

B.2 Anybus State Machine
The table below describes how the Anybus Statemachine relates to the EtherNet/IP network

Anybus State Implementation Comment
WAIT_PROCESS The module stays in this state until a Class 1

connection has been opened.
-

ERROR Class 1 connections errors
Duplicate IP address detected

-

PROCESS_ACTIVE Error free Class 1 connection active (RUN-bit
set in the 32-bit Run/Idle header of an Exclu-
sive-Owner connection)

Only valid for consuming connections.

IDLE Class 1 connection idle.
EXCEPTION Unexpected error, e.g. watchdog timeout etc. MS LED turns red (to indicate a major

fault)
NS LED is off

B.3 Application Watchdog Timeout Handling
Upon detection of an application watchdog timeout, the module will cease network participation
and shift to state EXCEPTION. No other network specific actions are performed.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

C Secure HICP (Secure Host IP Configuration
Protocol)

C.1 General
The Anybus CompactCom 40 EtherNet/IP supports the Secure HICP protocol used by the Any-
bus IPconfig utility for changing settings, e.g. IP address, Subnet mask, and enable/disable
DHCP. Anybus IPconfig can be downloaded free of charge from the HMS website, www.anybus.
com. This utility may be used to access the network settings of any Anybus product connected
to the network via UDP port 3250.

The protocol offers secure authentication and the ability to restart/reboot the device(s).

C.2 Operation
When the application is started, the network is automatically scanned for Anybus products. The
network can be rescanned at any time by clicking Scan.

To alter the network settings of a module, double-click on its entry in the list. A window will ap-
pear, containing the settings for the module.

Fig. 7

Validate the new settings by clicking Set, or click Cancel to cancel all changes. Optionally, the
configuration can be protected from unauthorized access by a password. To enter a password,
check the Change password checkbox and enter the password in the New password text
field.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix D: Technical Specification 166 (188)

D Technical Specification
D.1 Front View
D.1.1 Front View (Ethernet Connectors)

Item Connector
1 Network Status LED Ethernet,

RJ45

1 2

3 42 Module Status LED
3 Link/Activity LED (port 1)

4 Link/Activity LED (port 2)

Test sequences are performed on the Network and Module Status LEDs during startup.

D.1.2 Front View (M12 Connectors)
Item Connector
1 Network Status LED M12

1 2

3 4

2 Module Status LED
3 Link/Activity LED (port 1)

4 Link/Activity LED (port 2)

Test sequences are performed on the Network and Module Status LEDs during startup.

D.1.3 Network Status LED
LED State Description
Off No power or no IP address
Green Online, one or more connections established (CIP Class 1 or 3)
Green, flashing Online, no connections established
Red Duplicate IP address, FATAL error
Red, flashing One or more connections timed out (CIP Class 1 or 3)

D.1.4 Module Status LED
LED State Description
Off No power
Green Controlled by a Scanner in Run state
Green, flashing Not configured, or Scanner in Idle state
Red Major fault (EXCEPTION-state, FATAL error etc.)
Red, flashing Recoverable fault(s). Module is configured, but stored parameters differ from currently

used parameters.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix D: Technical Specification 167 (188)

D.1.5 LINK/Activity LED 3/4
LED State Description
Off No link, no activity
Green Link (100 Mbit/s) established
Green, flickering Activity (100 Mbit/s)
Yellow Link (10 Mbit/s) established
Yellow, flickering Activity (10 Mbit/s)

D.1.6 Ethernet Interface
The Ethernet interface 10/100Mbit, full or half duplex operation.

D.1.7 M12 Connectors, Code D
Pin Name Description
1 TXD+ Transmit positive

1
4

3
2

5

2 RXD+ Receive positive
3 TXD- Transmit negative
4 RXD- Receive negative
5
(Thread)

Shield Shield

D.2 Functional Earth (FE) Requirements
In order to ensure proper EMC behavior, the module must be properly connected to functional
earth via the FE pad/FE mechanism described in the Anybus CompactCom 40 Hardware
Design Guide. Proper EMC behavior is not guaranteed unless these FE requirements are
fulfilled.

D.3 Power Supply
D.3.1 Supply Voltage

The Anybus CompactCom 40 EtherNet/IP requires a regulated 3.3 V power source as specified
in the general Anybus CompactCom 40 Hardware Design Guide.

D.3.2 Power Consumption
TheAnybus CompactCom 40 EtherNet/IP is designed to fulfil the requirements of a Class B
module. The current hardware design consumes up to 360 mA

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix D: Technical Specification 168 (188)

In line with HMS policy of continuous product development, we reserve the right to change the
exact power requirements of this product without prior notification. However, in any case, the
Anybus CompactCom 40 EtherNet/IP will remain as a Class B module.

It is strongly advised to design the power supply in the host application based on the power con-
sumption classifications described in the general Anybus CompactCom Hardware Design Guide,
and not on the exact power requirements of a single product.

D.4 Environmental Specification
Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

D.5 EMC Compliance
Consult the Anybus CompactCom 40 Hardware Design Guide for further information.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix E: Timing & Performance 169 (188)

E Timing & Performance
E.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for
the Anybus CompactCom 40 EtherNet/IP.

Category Parameters Page
Startup Delay T1, T2 169

NW_INIT Handling T100 169

Event Based WrMsg Busy Time T103 169

Event Based Process Data Delay T101, T102 170

For further information, please consult the Anybus CompactCom 40 Software Design Guide.

E.2 Internal Timing
E.2.1 Startup Delay

The following parameters are defined as the time measured from the point where /RESET is re-
leased to the point where the specified event occurs.

Parameter Description Max. Unit.
T1 The Anybus CompactCom 40 EtherNet/IP module generates the

first application interrupt (parallel mode)
64 ms

T2 The Anybus CompactCom 40 EtherNet/IP module is able to re-
ceive and handle the first application telegram (serial mode)

64 ms

E.2.2 NW_INIT Handling
This test measures the time required by the Anybus CompactCom 40 EtherNet/IP module to
perform the necessary actions in the NW_INIT-state.

Parameter Conditions
No. of network specific commands Max.
No. of ADIs (single UINT8) mapped to Process Data in each direction. (If the network
specific maximum is less than the value given here, the network specific value will be
used.)

32

Event based application message response time > 1 ms
Ping-pong application response time > 10 ms
No. of simultaneously outstanding Anybus commands that the application can handle 1

Parameter Description Communication Max. Unit.
T100 NW_INIT handling Event based modes 58 ms

E.2.3 Event Based WrMsg Busy Time
The Event based WrMsg busy time is defined as the time it takes for the module to return the
H_WRMSG area to the application after the application has posted a message.

Parameter Description Min. Max. Unit.
T103 H_WRMSG area busy time 6 9 μs

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix E: Timing & Performance 170 (188)

E.2.4 Event Based Process Data Delay
“Read process data delay” is defined as the time from when the last bit of the network frame
has been received by the network interface, to when the RDPDI interrupt is asserted to the
application.

“Write process data delay” is defined as the time from when the application exchanges write
process data buffers, to when the first bit of the new process data frame is sent out on the
network.

The tests were run in 16-bit parallel event mode, with interrupts triggered only for new process
data events. Eight different IO sizes (2, 16, 32, 64, 128, 256, 512 and 1024 bytes) were used in
the tests, all giving the same test results.

The delay added by the PHY circuit has not been included, as this delay is insignificant com-
pared to the total process data delay.

Parameter Description Delay (min.) Delay (typ.) Delay
(max.)

Unit

T101 Read process data
delay
Measured at an IO
size of 32 bytes

- - 84 μs

T102 Write process data
delay
Measured at an IO
size of 32 bytes

- - 106 μs

NP40

Anybus

Host
connector Host Application

Ethernet
PHY

Ethernet
Trafo

Ethernet
connectorEthernet

Network

Read process data delay

Fig. 8

NP40

Anybus

Host
connector Host Application

Ethernet
PHY

Ethernet
Trafo

Ethernet
connectorEthernet

Network

Write process data delay

Fig. 9

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 171 (188)

F Backward Compatibility
The Anybus CompactCom M40 series of industrial network modules have significantly better
performance and include more functionality than the modules in the Anybus CompactCom 30
series. The 40 series is backward compatible with the 30 series in that an application developed
for the 30 series should be possible to use with the 40 series, without any major changes. Also
it is possible to mix 30 and 40 series modules in the same application.

This appendix presents the backwards compatibility issues that have to be considered for Any-
bus CompactCom 40 EtherNet/IP, when designing with both series in one application, or when
adapting a 30 series application for the 40 series.

F.1 Initial Considerations
There are two options to consider when starting the work to modify a host application developed
for Anybus CompactCom 30-series modules to also be compatible with the 40-series modules:

• Add support with as little work as possible i.e. reuse as much as possible of the current
design.

– This is the fastest and easiest solution but with the drawback that many of the new fea-
tures available in the 40-series will not be enabled (e.g. enhanced and faster commu-
nication interfaces, larger memory areas, and faster communication protocols).

– You have to check the hardware and software differences below to make sure the host
application is compatible with the 40-series modules. Small modifications to your cur-
rent design may be needed.

• Make a redesign and take advantage of all new features presented in the 40-series.

– A new driver and host application example code are available at www.anybus.com/
starterkit40 to support the new communication protocol.This driver supports both 30-
series and 40-series modules.

– You have to check the hardware differences below and make sure the host application
is compatible with the 40-series modules.

This documentation only deals with differences between the 30-series and the 40-series. For a
description of new and enhanced functionality in the Anybus CompactCom 40-series, please
consult our support pages, where you can find all documentation.

Link to support page: www.anybus.com/support.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

http://www.anybus.com/starterkit40
http://www.anybus.com/starterkit40
http://www.anybus.com/support

Appendix F: Backward Compatibility 172 (188)

F.2 Hardware Compatibility
Anybus CompactCom is available in three hardware formats; Module, Chip, and Brick.

F.2.1 Module
The modules in the 30-series and the 40-series share physical characteristics, like dimensions,
outline, connectors, LED indicators, mounting parts etc. They are also available as modules
without housing.

Fig. 10 Anybus CompactCom M30/M40

F.2.2 Chip
The chip (C30/C40) versions of the Anybus CompactCom differ completely when it comes to
physical dimensions.

There is no way to migrate a chip solution from the 30-series to the 40-series
without a major hardware update.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 173 (188)

F.2.3 Brick
The Anybus CompactCom B40-1 does not share dimensions with the Anybus CompactCom
B30. The B40-1 is thus not suitable for migration. However HMS Industrial Networks AB has de-
veloped a separate brick version in the 40-series, that can be used for migration. This product,
B40-2, shares dimensions etc. with the B30. Please contact HMS Industrial Networks AB for
more information on the Anybus CompactCom B40-2.

Fig. 11 Anybus CompactCom B30

Fig. 12 Anybus CompactCom B40–1 (not for migration)

Fig. 13 Anybus CompactCom B40–2

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 174 (188)

F.2.4 Host Application Interface

25
50

1
26

MD
1

A1 A3 A5 A7 A9 A1
1

A1
3

D6 D4 D2 D0 VD
D

VS
S

OM
1

CE IR
Q

RE
SE

T
GO

P0
GI

P0
LE

D2
B

LE
D1

B
Tx

/O
M3

MI
1

VS
S

VS
S A0 A2 A4 A6 A8 A1
0

A1
2 D7 D5 D3 D1 VD
D

VS
S

OM
0

OM
2

R/
W OE

GO
P1

GI
P1

LE
D2

A
LE

D1
A Rx MI
0

MD
0

Fig. 14

Some signals in the host application interface have modified functionality and/or functions which
must be checked for compatibility. See the following sections.

Tx/OM3
This pin is Tx only in the 30-series. It is tri-stated during power up, and driven by the Anybus
CompactCom UARTafter initialization. In the 40-series this pin is used as a fourth operating
mode setting pin (OM3). During startup after releasing the reset, this pin is read to determine
the operating mode to use. The pin is then changed to a Tx output.

In the 40-series, this pin has a built-in weak pull-up. If this pin, on a 30-series module or brick is
unconnected, pulled high, or connected to a high-Z digital input on the host processor, it will be
compatible with the 40-series. An external pull-up is recommended, but not required.

If this pin is pulled low by the host during startup, the 40-series module or brick will
not enter the expected operating mode.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Sec-
tion “Application Connector Pin Overview”

Module Identification (MI[0..1])
These pins are used by the host application (i.e your product) to identify what type of Anybus
CompactCom that is mounted. The identification differs between the 30-series and the 40-
series.

If your software use this identification you need to handle the new identification value.

MI1 MI0 Module Type
LOW LOW Active Anybus CompactCom 30
HIGH LOW Active Anybus CompactCom 40

MI[0..1] shall only be sampled by the application during the time period from power up to the
end of SETUP state. The pins are low at power up and before reset release.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Sec-
tion “Settings/Sync”.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 175 (188)

GIP[0..1]/LED3[A..B]
These pins are tri-stated inputs by default in the 30-series. In the 40-series, these pins are tri-
stated until the state NW_INIT. After that they become open-drain, active low LED outputs (LE-
D3A/LED3B).

No modification of the hardware is needed, if your current design has

• tied these pins to GND

• pulled up the pins

• pulled down the pins

• left the pins unconnected

However, if the application drive the pins high, a short circuit will occur.

If you connect the pins to LEDs, a pull-up is required.

In the 40-series, there is a possibility to set the GIP[0..1] and GOP[0..1] in high impedance state
(tri-state) by using attribute #16 (GPIO configuration) in the Anybus object (01h). I.e. if it is not
possible to change the host application hardware, this attribute can be configured for high impe-
dance state of GIP and GOP before leaving NW_INITstate.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Sec-
tion “LED Interface/D8-D15 (Data Bus)”

GOP[0..1]/LED4[A..B]
These pins are outputs (high state) by default in the 30-series. In the 40-series, these pins are
tri-stated until the state NW_INIT, and after that they become push-pull, active low LED outputs
(LED4A/LED4B).

This change should not affect your product.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Sec-
tion 3.2.3, LED Interface/D8-D15 (Data Bus)

Address Pins A[11..13]
The address pins 11, 12, and 13 are ignored by the 30-series. These pins must be high when
accessing the 40-series module in backwards compatible 8-bit parallel mode. If you have left
these pins unconnected or connected to GND, you need to make a hardware modification to tie
them high.

Max Input Signal Level (VIH)
The max input signal level for the 30-series is specified as VIH=VDD+0,2 V, and for the 40-series
as VIH=3.45 V. Make sure that you do not exceed 3.45V for a logic high level.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 176 (188)

F.3 General Software
F.3.1 Extended Memory Areas

The memory areas have been extended in the 40-series, and it is now possible to access larger
sizes of process data (up to 4096 bytes instead of former maximum 256 bytes) and message
data (up to 1524 bytes instead of former maximum 255 bytes). The 30-series has reserved
memory ranges that the application should not use. The 40-series implements new functionality
in some of these memory areas.

To use the extended memory areas you need to implement a new communication protocol which
is not part of this document.

Memory areas not supported by the specific network cannot be used. Make sure you do not ac-
cess these areas, e.g. for doing read/write memory tests.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), Sec-
tion “Memory Map”

F.3.2 Faster Ping-Pong Protocol
The ping-pong protocol (the protocol used in the 30-series) is faster in the 40-series. A 30-ser-
ies module typically responds to a “ping” within 10-100 µs. The 40-series typically responds to a
“ping” within 2 µs.

Interrupt-driven applications (parallel operating mode) may see increased CPU load due to the
increased speed.

F.3.3 Requests from CompactCom to Host Application During Startup
All requests to software objects in the host application must be handled and responded to (even
if the object does not exist). This applies for both the 30-series and the 40-series. The 40-series
introduces additional objects for new functionality.

There may also be additional commands in existing objects added to the 40-series that must be
responded to (even if it is not supported).

If your implementation already responds to all commands it cannot process, which is the ex-
pected behavior, you do not need to change anything.

F.3.4 Anybus Object (01h)
Attribute 30-series 40-series Change/Action/Comment
#1, Module Type 0401h 0403h Make sure the host application accepts the

new module type value for the 40-series.
#15, Auxiliary Bit Available Removed It is not possible to turn off the “Changed Data

Indication” in the 40-series. Also see “Control
Register CTRL_AUX-bit” and “Status Regis-
ter STAT_AUX-bit” below.

#16, GPIO
Configuration

Default: General
input and output
pins

Default: LED3
and LED4
outputs

See also ..

• GIP[0..1]/LED3[A..B], p. 175

• GOP[0..1]/LED4[A..B], p. 175

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 177 (188)

F.3.5 Control Register CTRL_AUX-bit

30-series The CTRL_AUX bit in the control register indicates to the Anybus CompactCom if the
process data in the current telegram has changed compared to the previous one.

40-series The value of the CTRL_AUX bit is always ignored. Process data is always accepted.

All released Anybus CompactCom 30 example drivers from HMS comply with this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

F.3.6 Status Register STAT_AUX-bit

30-series The STAT_AUX bit in the status register indicates if the output process data in the current
telegram has changed compared to the previous one. This functionality must be enabled
in the Anybus object (01h), Attribute #15. By default, the STAT_AUX bit functionality is
disabled.

40-series The STAT_AUX bit indicates updated output process data (not necessarily changed data)
from the network compared to the previous telegram. The functionality is always enabled.

All released Anybus CompactCom 30 example drivers from HMS comply with this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Status Register”.

F.3.7 Control Register CTRL_R-bit

30-series The application may change this bit at any time.

40-series For the 8-bit parallel operating mode, the bit is only allowed to transition from 1 to 0 when
the STAT_M-bit is set in the status register. When using the serial operating modes, it is
also allowed to transition from 1 to 0 in the telegram immediately after the finalizing empty
fragment.

All released CompactCom 30 example drivers from HMS comply with this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

F.3.8 Modifications of Status Register, Process Data Read Area, and
Message Data Read Area
In the 40-series, the Status Register, the Process Data Read Area, and the Message Data Read
Area are write protected in hardware (parallel interface). If the software for some reason writes
to any of those areas, a change is needed.

All released Anybus CompactCom 30 example drivers from HMS comply with this difference.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 178 (188)

F.4 Network Specific — EtherNet/IP
F.4.1 Network Object (03h)

Attribute #1, Network
Type

The 30-series module is available in two network type versions, either with
“Beacon based DLR” (Highest performance) or with “Announce based DLR”
which both are Ethernet redundancy protocols. The 40-series is only available
with “Beacon based DLR”. The network type value differs between the versions.

Value Network Type Anybus CompactCom Product
0085h EtherNet/IP, No DLR 30-series 1-port
009Ch EtherNet/IP, Announce Based DLR 30-series 2-port
009Bh EtherNet/IP, Beacon Based DLR 30-series and 40-series
00ABh EtherNet/IP, Beacon Based DLR +

IIoT
40–series

F.4.2 EtherNet/IP Host Object (F8h)
Attribute Default Anybus CompactCom

Product
Comment

#2, Device
Type

0000h 30-series, EtherNet/IP,
No DLR

If the attribute is implemented in the
host application, it overrides the de-
fault value and there is no difference
between the 30-series and the 40-
series.
If the attribute is not implemented,
the default value is used.

0000h 30-series, EtherNet/IP,
Announce Based DLR

002Bh 30-series, EtherNet/IP,
Beacon Based DLR

002Bh 40-series, EtherNet/IP,
Beacon Based DLR

#3, Product
Code

0063h 30-series, EtherNet/IP,
No DLR

If the attribute is implemented in the
host application, it overrides the de-
fault value and there is no difference
between the 30-series and the 40-
series.
If the attribute is not implemented,
the default value is used.

002Eh 30-series, EtherNet/IP,
Announce Based DLR

0036h 30-series, EtherNet/IP,
Beacon Based DLR

0037h 40-series, EtherNet/IP,
Beacon Based DLR

#6, Product
Name

Anybus-CC EtherNet/IP 30-series, EtherNet/IP,
No DLR

If the attribute is implemented in the
host application, it overrides the de-
fault value and there is no difference
between the 30-series and the 40-
series.
If the attribute is not implemented,
the default value is used.

CompactCom EtherNet/
IP(TM) 2P

30-series, EtherNet/IP,
Announce Based DLR

Anybus-CC EIP (2-Port)
BB DLR

30-series, EtherNet/IP,
Beacon Based DLR

Anybus CompactCom 40
EtherNet/IP(TM)

40-series, EtherNet/IP,
Beacon Based DLR

Attribute
#27, Produc-
ing Instance
Map

See comment Attribute removed in the 40-series
(only available in the 30-series Ether-
Net/IP Beacon Based DLR). The
CompactCom will never request this
attribute. Replaced by the functional-
ity in the Assembly Mapping Object
(EBh).
If this attribute is used, the Assembly
Mapping object must be implemented
instead.

Attribute
#28, Con-
suming In-
stance Map

See comment Attribute removed in the 40-series
(only available in the 30-series Ether-
Net/IP Beacon Based DLR). The
CompactCom will never request this
attribute. Replaced by the functional-
ity in the Assembly Mapping Object
(EBh).
If this attribute is used, the Assembly
Mapping object must be implemented
instead.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix F: Backward Compatibility 179 (188)

EtherNet/IP functionality

Max Message
Connections

The maximum number of simultaneous Class 3 connections are 16 in the 30-
series and 6 in the 40-series.

No change is needed in the host application.

EtherNet/IP
Encapsulation
Sessions

The maximum number of simultaneous encapsulation sessions are 48 in the 30-
series and 15 in the 40-series.

No change is needed in the host application.

F.4.3 EDS file (Electronic Datasheet file used by configuration tool)
EDS file Generator Tool

An EDS-generator for automatic EDS-file generation up to date with the differences below. The
EDS-generator only works with the 40-series, version 1.30 and later.

The generator can be downloaded from www.anybus.com/starterkit40: .

Keywords
The following keywords differs between the 30-series and the 40-series. The EDS generator re-
flects this change.

Keyword Comments
Capacity->MaxCIPConnections Removed in 40-series – replaced by: MaxMsgCon-

nections and MaxIOConnections (see below)
Capacity->MaxMsgConnections New keyword in the 40-series, Value: 6
Capacity->MaxIOConnections New keyword in the 40-series, Value: 4

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

http://www.anybus.com/starterkit40

Appendix G: Copyright Notices 180 (188)

G Copyright Notices
lwIP is licenced under the BSD licence:

Copyright (c) 2001-2004 Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITYAND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

Print formatting routines

Copyright (C) 2002 Michael Ringgaard. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the project nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS”AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITYAND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix G: Copyright Notices 181 (188)

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

Copyright (c) 2002 Florian Schulze.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with the
distribution.
3. Neither the name of the authors nor the names of the contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITYAND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

ftpd.c - This file is part of the FTP daemon for lwIP

--

FatFs - FAT file system module R0.09b (C)ChaN, 2013

FatFs module is a generic FAT file system module for small embedded systems. This is a free
software that opened for education, research and commercial developments under license poli-
cy of following trems.

Copyright (C) 2013, ChaN, all right reserved.

The FatFs module is a free software and there is NO WARRANTY. No restriction on use. You
can use, modify and redistribute it for personal, non-profit or commercial products UNDER
YOUR RESPONSIBILITY. Redistributions of source code must retain the above copyright
notice.

--

Copyright (c) 2016 The MINIX 3 Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix G: Copyright Notices 182 (188)

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with the
distribution.
3. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITYAND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Author: David van Moolenbroek <david@minix3.org>

--

MD5 routines

Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.

This software is provided “as-is”, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software. Permission is
granted to anyone to use this software for any purpose, including commercial applications, and
to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the prod-
uct documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch

ghost@aladdin.com

--

Copyright 2013 jQuery Foundation and other contributors

http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OFANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix G: Copyright Notices 183 (188)

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--

rsvp.js

Copyright (c) 2013 Yehuda Katz, Tom Dale, and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OFANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

--

libb (big.js)
The MIT Expat Licence.
Copyright (c) 2012 Michael Mclaughlin

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the 'Software'), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OFANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

--

The “inih” library is distributed under the New BSD license:
Copyright (c) 2009, Ben Hoyt
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix G: Copyright Notices 184 (188)

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.
* Neither the name of Ben Hoyt nor the names of its contributors may be used to endorse or pro-
mote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY BEN HOYT “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITYAND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL BEN HOYT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

**

open62541 is licensed under the Mozilla Public License v2.0

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of
the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

To obtain customized changes please contact foss@anybus.com.

**

musl as a whole is licensed under the following standard MIT license:

--

Copyright © 2005-2014 Rich Felker, et al.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OFANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

--

**

PCG Random Number Generation for C.

Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>

Licensed under the Apache License, Version 2.0 (“the License”); you may not use this file ex-
cept in compliance with the License. You may obtain a copy of the License at

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix G: Copyright Notices 185 (188)

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OFANY
KIND, either express or implied. See the License for the specific language governing permis-
sions and limitations under the License.

For additional information about the PCG random number generation scheme, including its li-
cense and other licensing options, visit

http://www.pcg-random.org

**

queue.h

Copyright (c) 1991, 1993

The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITYAND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

@(#)queue.h 8.5 (Berkeley) 8/20/94

--

Format - lightweight string formatting library.
Copyright (C) 2010-2013, Neil Johnson
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

Appendix G: Copyright Notices 186 (188)

* Neither the name of nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITYAND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Anybus CompactCom 40 EtherNet/IP Network Guide SCM-1202-031 1.5

This page intentionally left blank

last page

© 2017 HMS Industrial Networks AB
Box 4126
300 04 Halmstad, Sweden

info@hms.se SCM-1202-031 1.5.6619 / 2017-12-15

	1 Preface
	1.1 About this document
	1.2 Related Documents
	1.3 Document History
	1.4 Document Conventions
	1.5 Document Specific Conventions
	1.6 Abbreviations
	1.7 Trademark Information

	2 About the Anybus CompactCom 40 EtherNet/IP
	2.1 General
	2.2 Features

	3 Basic Operation
	3.1 General Information
	3.1.1 Software Requirements
	3.1.2 Electronic Data Sheet (EDS)

	3.2 Network Identity
	3.3 Communication Settings
	3.3.1 Communication Settings in Stand Alone Shift Register Mode

	3.4 Beacon Based DLR (Device Level Ring)
	3.5 Network Data Exchange
	3.5.1 Application Data
	3.5.2 Process Data
	3.5.3 Translation of Data Types

	3.6 Web Interface
	3.7 E-mail Client
	3.8 Modular Device Functionality
	3.9 File System
	3.9.1 Overview
	3.9.2 General Information
	3.9.3 System Files

	4 EtherNet/IP Implementation Details
	4.1 General Information
	4.2 EtherNet/IP & CIP Implementation
	4.3 Using the Assembly Mapping Object (EBh)
	4.3.1 Introduction
	4.3.2 Adding Data - The Application Data Object
	4.3.3 Grouping Data - The Assembly Mapping Object
	4.3.4 Configuring CIP Assembly Numbers
	4.3.5 Going Forward

	4.4 Socket Interface (Advanced Users Only)
	4.5 Diagnostics
	4.6 QuickConnect
	4.7 CIP Safety
	4.7.1 Safety Module Firmware Upgrade
	4.7.2 Reset Request from Network

	5 FTP Server
	5.1 General Information
	5.2 User Accounts
	5.3 Session Example

	6 Web Server
	6.1 General Information
	6.2 Default Web Pages
	6.2.1 Network Configuration
	6.2.2 Ethernet Statistics Page

	6.3 Server Configuration
	6.3.1 General Information
	6.3.2 Index page
	6.3.3 Default Content Types
	6.3.4 Authorization

	7 E-mail Client
	7.1 General Information
	7.2 How to Send E-mail Messages

	8 Server Side Include (SSI)
	8.1 General Information
	8.2 Include File
	8.3 Command Functions
	8.3.1 General Information
	8.3.2 GetConfigItem()
	8.3.3 SetConfigItem()
	8.3.4 SsiOutput()
	8.3.5 DisplayRemoteUser
	8.3.6 ChangeLanguage()
	8.3.7 IncludeFile()
	8.3.8 SaveDataToFile()
	8.3.9 printf()
	8.3.10 scanf()

	8.4 Argument Functions
	8.4.1 General Information
	8.4.2 ABCCMessage()

	8.5 SSI Output Configuration

	9 JSON
	9.1 General Information
	9.1.1 Access

	9.2 JSON Objects
	9.2.1 ADI
	9.2.2 Module
	9.2.3 Network
	9.2.4 Services
	9.2.5 Hex Format Explained

	9.3 Example

	10 CIP Objects
	10.1 General Information
	10.2 Translation of Status Codes
	10.3 Identity Object (01h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes
	Device Status
	Service Details: Reset

	10.4 Message Router (02h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	10.5 Assembly Object (04h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance 03h Attributes (Heartbeat, Input-Only)
	Instance 04h Attributes (Heartbeat, Listen-Only)
	Instance 05h Attributes (Configuration Data)
	Instance 06h Attributes (Heartbeat, Input-Only Extended)
	Instance 07h Attributes (Heartbeat, Listen-Only Extended)
	Instance 64h Attributes (Producing Instance)
	Instance 96h Attributes (Consuming Instance)

	10.6 Connection Manager (06h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes
	Class 0 Connection Details
	Class 1 Connection Details
	Class 3 Connection Details

	10.7 Parameter Object (0Fh)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes
	Default Values

	10.8 DLR Object (47h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	10.9 QoS Object (48h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	10.10 Base Energy Object (4Eh)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	10.11 Power Management Object (53h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	10.12 ADI Object (A2h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	10.13 Port Object (F4h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes (Instance #1)
	Instance Attributes (Instances #2... #8)

	10.14 TCP/IP Interface Object (F5h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	10.15 Ethernet Link Object (F6h)
	Category
	Object Description
	Supported Services
	Class Attributes
	Instance Attributes

	11 Anybus Module Objects
	11.1 General Information
	11.2 Anybus Object (01h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	11.3 Diagnostic Object (02h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	11.4 Network Object (03h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	11.5 Network Configuration Object (04h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #3, IP Address)
	Instance Attributes (Instance #4, Subnet Mask)
	Instance Attributes (Instance #5, Gateway Address)
	Instance Attributes (Instance #6, DHCP Enable)
	Instance Attributes (Instance #7 Ethernet Communication Settings 1)
	Instance Attributes (Instance #8 Ethernet Communication Settings 2)
	Instance Attributes (Instance #9, DNS1)
	Instance Attributes (Instance #10, DNS2)
	Instance Attributes (Instance #11, Host name)
	Instance Attributes (Instance #12, Domain name)
	Instance Attributes (Instance #13, SMTP Server)
	Instance Attributes (Instance #14, SMTP User)
	Instance Attributes (Instance #15, SMTP Password)
	Instance Attributes (Instance #16, MDI 1 Settings)
	Instance Attributes (Instance #17, MDI 2 Settings)
	Instance Attributes (Instances #18 and #19)
	Instance Attributes (Instance #20, QuickConnect)
	Multilingual Strings

	11.6 Socket Interface Object (07h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Sockets #1...Max. no. of instances)
	Command Details: Create
	Command Details: Delete
	Command Details: Bind
	Command Details: Shutdown
	Command Details: Listen
	Command Details: Accept
	Command Details: Connect
	Command Details: Receive
	Command Details: Receive_From
	Command Details: Send
	Command Details: Send_To
	Command Details: IP_Add_Membership
	Command Details: IP_Drop_Membership
	Command Details: DNS_Lookup
	Socket Interface Error Codes (Object Specific)
	Message Segmentation

	11.7 SMTP Client Object (09h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Create
	Command Details: Delete
	Command Details: Send E-mail From File
	Command Details: Send E-mail
	Object Specific Error Codes

	11.8 Anybus File System Interface Object (0Ah)
	Category
	Object Description

	11.9 Network Ethernet Object (0Ch)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Instance Attributes (Instances #2 - #3)
	Interface Counters
	Media Counters

	11.10 CIP Port Configuration Object (0Dh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	11.11 Functional Safety Module Object (11h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Error_Confirmation
	Command Details: Set_IO_Config_String
	Command Details: Get_Safety_Output_PDU
	Command Details: Get_Safety_Input_PDU
	Object Specific Error Codes

	12 Host Application Objects
	12.1 General Information
	12.2 Functional Safety Object (E8h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	12.3 Application File System Interface Object (EAh)
	Category
	Object Description

	12.4 CIP Identity Host Object (EDh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Get_Attribute_All

	12.5 Sync Object (EEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	12.6 EtherNet/IP Host Object (F8h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Multiple Assembly Instances
	Command Details: Process_CIP_Object_Request
	Command Details: Set_Configuration_Data
	Command Details: Process_CIP_Routing_Request
	Command Details: Get_Configuration_Data

	12.7 Ethernet Host Object (F9h)
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Network Status
	DHCP Option 61 (Client Identifier)

	A Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B Implementation Details
	B.1 SUP-Bit Definition
	B.2 Anybus State Machine
	B.3 Application Watchdog Timeout Handling

	C Secure HICP (Secure Host IP Configuration Protocol)
	C.1 General
	C.2 Operation

	D Technical Specification
	D.1 Front View
	D.1.1 Front View (Ethernet Connectors)
	D.1.2 Front View (M12 Connectors)
	D.1.3 Network Status LED
	D.1.4 Module Status LED
	D.1.5 LINK/Activity LED 3/4
	D.1.6 Ethernet Interface
	D.1.7 M12 Connectors, Code D

	D.2 Functional Earth (FE) Requirements
	D.3 Power Supply
	D.3.1 Supply Voltage
	D.3.2 Power Consumption

	D.4 Environmental Specification
	D.5 EMC Compliance

	E Timing & Performance
	E.1 General Information
	E.2 Internal Timing
	E.2.1 Startup Delay
	E.2.2 NW_INIT Handling
	E.2.3 Event Based WrMsg Busy Time
	E.2.4 Event Based Process Data Delay

	F Backward Compatibility
	F.1 Initial Considerations
	F.2 Hardware Compatibility
	F.2.1 Module
	F.2.2 Chip
	F.2.3 Brick
	F.2.4 Host Application Interface

	F.3 General Software
	F.3.1 Extended Memory Areas
	F.3.2 Faster Ping-Pong Protocol
	F.3.3 Requests from CompactCom to Host Application During Startup
	F.3.4 Anybus Object (01h)
	F.3.5 Control Register CTRL_AUX-bit
	F.3.6 Status Register STAT_AUX-bit
	F.3.7 Control Register CTRL_R-bit
	F.3.8 Modifications of Status Register, Process Data Read Area, and Message Data Read Area

	F.4 Network Specific — EtherNet/IP
	F.4.1 Network Object (03h)
	F.4.2 EtherNet/IP Host Object (F8h)
	F.4.3 EDS file (Electronic Datasheet file used by configuration tool)

	G Copyright Notices

