## SINUS H

VARIABLE FREQUENCY DRIVE

## USER MANUAL -Installation and Programming Instructions-

## Issued on 07/03/17

R. 02

Software Version 32.51

English

- This manual is integrant and essential to the product. Carefully read the instructions contained herein as they provide important hints for use and maintenance safety.
- This device is to be used only for the purposes it has been designed to. Other uses should be considered improper and dangerous. The manufacturer is not responsible for possible damages caused by improper, erroneous and irrational uses.
- Enertronica Santerno S.p.A. is responsible for the product in its original setting.
- Any changes to the structure or operating cycle of the product must be performed or authorized by Enertronica Santerno S.p.A..
- Enertronica Santerno S.p.A. assumes no responsibility for the consequences resulting by the use of non-original spare-parts.
- Enertronica Santerno S.p.A. reserves the right to make any technical changes to this manual and to the product without prior notice. If printing errors or similar are detected, the corrections will be included in the new releases of the manual.
- The information contained herein is the property of Enertronica Santerno S.p.A. and cannot be reproduced. Enertronica Santerno S.p.A. enforces its rights on the drawings and catalogues according to the law.



## Revision Index

The following subjects covered in this User Manual (Installation and Programming Instructions) R. 02 have been added or changed in respect to revision R.01:

- Information about the protection level for connection terminals and devices added.
- Cable Wiring detailed for IP20 0034 model too.
- Figures for Terminals in IP20 0034 model and IP66 models added.
- References to AO2 Analog Output and A2/C2 Digital Output added [0034 model only].
- Bracket dimensions and mounting for LCD keypad added.
- Section about Sensorless Vector Control for PM (Permanent-Magnet) Syn Motors added.
- Table for the recommended MCCB for RMS symmetrical amperes added.
- Statement about maximum distance (3m) for remoting the graphic keypad added.
- References to PTC Trip and MC Fail Trip removed.
- Some measures in External Dimensions table fixed.
- RS-232/RS-485 converter replaced by USB/RS-485 converter.
- Values of Heat Emission updated.
- Section about Applying Drives to Single-Phase InputApplication added.
- EMC footprint and standard filters:"EN55011 (B class)" changed to "EN55011 (Group 1 Class A)" and "EN55011 (A class)" changed to "EN55011 (Group 2 Class A)"
- Unused EMC filter models removed ( 2 S from the footprint filters and 4T from the standard filters).
- Stated that the Output Ferrite is required also for the drive models featuring built-in filters.


## Santerno User Manuals mentioned in this Instructions Guide

The following Santerno User Manuals are mentioned throughout this Instructions Guide:

- 15W0102B500 Motor Drives Accessories - User Manual
- 15W0176B100 Sinus H - Conduit Kit and Flange Kit Manual


## Safety Information

## Safety Information

Read and follow all safety instructions in this manual precisely to avoid unsafe operating conditions, property damage, personal injury, or death.

## Safety symbols in this manual

## A Danger

Indicates an imminently hazardous situation which, if not avoided, will result in severe injury or death.

## © Warning

Indicates a potentially hazardous situation which, if not avoided, could result in injury or death.

## (1) Caution

Indicates a potentially hazardous situation that, if not avoided, could result in minor injury or property damage.

## Safety information

## A Danger

- Do not open the cover of the equipment while it is on or operating. Likewise, do not operate the inverter while the cover is open. Exposure of high voltage terminals or charging area to the external environment may result in an electric shock. Do not remove any covers or touch the internal circuit boards (PCBs) or electrical contacts on the product when the power is on or during operation. Doing so may result in serious injury, death, or serious property damage.
- Do not open the cover of the equipment even when the power supply to the inverter has been turned off unless it is necessary for maintenance or regular inspection. Opening the cover may result in an electric shock even when the power supply is off.
- The equipment may hold charge long after the power supply has been turned off. Use a multimeter to make sure that there is no voltage before working on the inverter, motor or motor cable.


## ENERTRONICA <br> SANTERNO

## © Warning

- This equipment must be grounded for safe and proper operation.
- Do not supply power to a faulty inverter. If you find that the inverter is faulty, disconnect the power supply and have the inverter professionally repaired.
- The inverter becomes hot during operation. Avoid touching the inverter until it has cooled to avoid burns.
- Do not allow foreign objects, such as screws, metal chips, debris, water, or oil to get inside the inverter. Allowing foreign objects inside the inverter may cause the inverter to malfunction or result in a fire.
- Do not operate the inverter with wet hands. Doing so may result in electric shock.
- Check the information about the protection level for the circuits and devices. The following connection terminals and devices are the Electrical Protection level 0. It means that the circuit protection level depends on the basic insulation. If there is no basic insulation or it has failed, electric shock accident may occur. When installing or wiring the connection terminals and devices, take the same protective action as for the power wiring.
- Multi-function Input: P1-P7 for IP20 models, P1-P5 for IP66 models, CM
- Analog Frequency Input: VR, V1, I2, TI
- Safety Function: SA, SB, SC
- Analog Output:AO,AO2 [0034 model only], TO
- Digital Output: Q1, EG, 24, A1/C1/B1, A2/C2 [0034 model only]
- Communication: S+/S-/SG
- Fan
- The protection level of this equipment (inverter) is the Electrical Protection level 1.


## (1) Caution

- Do not modify the interior workings of the inverter. Doing so will void the warranty.
- The inverter is designed for 3-phase motor operation. Do not use the inverter to operate a single phase motor.
- Do not place heavy objects on top of electric cables. Doing so may damage the cable and result in an electric shock.


## Safety Information

## Note

Maximum allowed prospective short-circuit current at the input power connection is defined in IEC 60439-1 as 100 kA . Depending on the selected MCCB, the SINUS H Series is suitable for use in circuits capable of delivering a maximum of 100 kA RMS symmetrical amperes at the drive's maximum rated voltage. The following table lists the recommended MCCB for RMS symmetrical amperes.

|  | ABB Tmax | LSIS Susol |  |  | LSIS Metasol |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Working <br> Voltage | TIB160 <br> $(\mathbf{B} / \mathbf{C} / \mathbf{N})[\mathrm{kA}]$ | UTE100 <br> (E/N $)[\mathrm{kA}]$ | UTS150 <br> $(\mathbf{N} / \mathrm{H} / \mathrm{L})[\mathrm{kA}]$ | ABS33c <br> $[\mathrm{kA}]$ | ABS33c <br> $[\mathrm{kA}]$ | ABS63c <br> $[\mathrm{kA}]$ | ABS103c <br> $[\mathrm{kA}]$ |  |
| $240 \mathrm{~V}(50 / 60 \mathrm{~Hz})$ | $25 / 40 / 50$ | $50 / 65$ | $65 / 100 / 150$ | 30 | 35 | 35 | 85 |  |
| $480 \mathrm{~V}(50 / 60 \mathrm{~Hz})$ | $8 / 10 / 15$ | $25 / 35$ | $35 / 65 / 100$ | 7.5 | 10 | 10 | 26 |  |

## Quick Reference Table

The following table contains situations frequently encountered by users while working with inverters. Refer to the typical and practical situations in the table to quickly and easily locate answers to your questions.

| Situation | Reference |
| :--- | :--- |
| I want to run a slightly higher rated motor than the inverter's rated capacity. | p. 276 |
| I want to configure the inverter to start operating as soon as the power source is <br> applied. | p. 139 |
| I want to configure the motor's parameters. | p.205 |
| I want to set up sensorless vector control. | p.208 |
| Something seems to be wrong with the inverter or the motor. | p. 295, p.405 |
| What is auto tuning? | p.205 |
| What are the recommended wiring lengths? | p. 295, p. 405 |
| The motor is too noisy. | p. 240 |
| I want to apply PID control on my system. | p. 196 |
| What are the factory default settings for P1-P7 (IP20 models) or P1-P5 (IP66 |  |
| models) multi-function terminals? | p. 51 |
| I want to view all of the parameters I have modified. | p. 249 |
| I want to review recent fault trip and warning histories. | p. 371 |
| I want to change the inverter's operation frequency using a potentiometer. | p. 81 |
| I want to install a frequency meter using an analog terminal. | p. 53 |
| I want to display the supply current to motor. | p. 84 |
| I want to operate the inverter using a multi-step speed configuration. | p. 131 |
| The motor runs too hot. | p. 274 |
| The inverter is too hot. | p. 283 |
| The cooling fan does not work. | p. 411 |
| I want to change the items that are monitored on the keypad. |  |

## Table of Contents

## Table of Contents

1 Preparing the Installation ..... 16
1.1 Product Identification ..... 16
1.2 Part Names for IP20 models. ..... 18
1.3 Part Names for IP66 models ..... 21
1.4 Installation Considerations. ..... 23
1.5 Selecting and Preparing a Site for Installation ..... 24
1.6 Cable Selection ..... 28
2 Installing the Inverter ..... 30
2.1 Mounting the Inverter ..... 32
2.2 CableWiring ..... 36
2.3 Post-Installation Checklist ..... 63
2.4 Test Run ..... 65
3 Learning to Perform Basic Operations ..... 67
3.1 About the Keypad ..... 67
3.1.1 About the Display ..... 68
3.1.2 Operation Keys ..... 69
3.1.3 Control Menu ..... 70
3.2 Learning to Use the Keypad ..... 71
3.2.1 Group and CodeSelection ..... 71
3.2.2 Navigating Directly to Different Codes ..... 72
3.2.3 Setting ParameterValues ..... 73
3.2.4 Configuring the [ESC]Key. ..... 74
3.3 Actual Application Examples. ..... 76
3.3.1 AccelerationTimeConfiguration ..... 76
3.3.2 Frequency Reference Configuration ..... 77
3.3.3 Jog Frequency Configuration ..... 78
3.3.4 Initializing All Parameters ..... 79
3.3.5 Frequency Setting (Potentiometer) and Operation (Terminal Input). ..... 81

## ENERTRONICA

## SANTERNO

## Table of Contents

3.3.6 Frequency Setting (Potentiometer) and Operation (Keypad) ..... 82
3.4 Monitoring the Operation ..... 84
3.4.1 Output Current Monitoring ..... 84
3.4.2 FaultTrip Monitoring ..... 85
3.5 About the LCD keypad (graphic keypad) ..... 87
3.5.1 Operation Keys ..... 87
3.5.2 Bracket dimensions and mounting ..... 89
3.5.3 About the Display ..... 90
3.5.4 Display Modes ..... 93
3.6 Learning to Use the LCD keypad (graphic keypad) ..... 96
3.6.1 Display Mode Selection ..... 96
3.6.2 Switching Groups ..... 99
3.6.3 Navigating through the Codes (Functions) ..... 101
3.6.4 Navigating Directly to Different Codes ..... 103
3.6.5 Parametersettings ..... 104
3.6.6 Monitoring the Operation ..... 106
3.7 Fault Monitoring ..... 109
3.7.1 Monitoring Faults during InverterOperation ..... 109
3.7.2 Monitoring Multiple FaultTrips ..... 110
3.8 Parameter Initialization ..... 112
4 Learning Basic Features ..... 113
4.1 Setting Frequency Reference ..... 116
4.1.1 Keypad as the Source (KeyPad-1 setting) ..... 117
4.1.2 Keypad as the Source (KeyPad-2 setting) ..... 117
4.1.3 V1 Terminal as the Source ..... 118
4.1.4 Setting a Frequency Reference with InputVoltage (Terminal I2) ..... 125
4.1.5 Setting a Frequency with TI Pulse Input ..... 127
4.1.6 Setting a Frequency Reference via RS-485 Communication ..... 129
4.2 Frequency Hold by Analog Input ..... 130
4.3 Changing the Displayed Units ( $\mathrm{Hz} \leftrightarrow \mathrm{Rpm}$ ) ..... 131
4.4 Setting Multi-step Frequency ..... 131

## Table of Contents

4.5 Command Source Configuration ..... 133
4.5.1 The Keypad as a Command Input Device ..... 133
4.5.2 Terminal Block as a Command Input Device (Fwd/Rev Run Commands) ..... 134
4.5.3 Terminal Block as a Command Input Device (Run and Rotation Direction Commands) ..... 135
4.5.4 RS-485 Communication as a Command Input Device ..... 136
4.6 Local/Remote Mode Switching ..... 136
4.7 Forward or Reverse Run Prevention ..... 138
4.8 Power-on Run ..... 139
4.9 Reset and Restart ..... 140
4.10 SettingAcceleration and Deceleration Times ..... 141
4.10.1 Acc/DecTime Based on Maximum Frequency. ..... 141
4.10.2 Acc/DecTime Based on Operation Frequency ..... 143
4.10.3 Multi-step Acc/DecTime Configuration ..... 144
4.10.4 Configuring Acc/DecTime Switch Frequency ..... 146
4.11 Acc/Dec Pattern Configuration ..... 147
4.12 Stopping theAcc/Dec Operation ..... 149
4.13 V/F(Voltage/Frequency) Control ..... 150
4.13.1 LinearV/F Pattem Operation. ..... 150
4.13.2 Square Reduction V/F pattern Operation ..... 151
4.13.3 UserV/F Pattern Operation ..... 152
4.14 TorqueBoost. ..... 153
4.14.1 Manual Torque Boost ..... 153
4.14.2 Auto Torque Boost. ..... 154
4.15 Output Voltage Setting ..... 155
4.16 Start Mode Setting ..... 155
4.16.1 Acceleration Start ..... 156
4.16.2 StartAfter DC Braking ..... 156
4.17 Stop Mode Setting ..... 157
4.17.1 Deceleration Stop ..... 157
4.17.2 StopAfter DCBraking ..... 157

## Table of Contents

4.17.3 Free Run Stop ..... 159
4.17.4 PowerBraking ..... 159
4.18 Frequency Limit ..... 160
4.18.1 Frequency Limit Using Maximum Frequency and Start Frequency .. ..... 160
4.18.2 Frequency Limit Using Upper and Lower Limit Frequency Values ..... 161
4.18.3 FrequencyJump ..... 162
4.19 2nd Operation Mode Setting ..... 163
4.20 Multi-function Input Terminal Control ..... 164
4.21 P2P Setting ..... 166
4.22 Multi-keypad Setting ..... 167
4.23 User Sequence Setting ..... 168
4.24 Fire Mode Operation ..... 175
5 Learning Advanced Features ..... 178
5.1 Operating with Auxiliary References ..... 179
5.2 Jog operation ..... 184
5.2.1 Jog Operation 1-Forward Jog by Multi-functionTerminal ..... 185
5.2.2 Jog Operation 2-Fwd/RevJog by Multi-function Terminal ..... 186
5.2.3 Jog Operation by Keypad ..... 187
5.3 Up-down Operation ..... 188
5.4 3-Wire Operation ..... 189
5.5 Safe Operation Mode ..... 190
5.6 Dwell Operation ..... 192
5.7 Slip Compensation Operation ..... 194
5.8 PID Control ..... 196
5.8.1 PID Basic Operation ..... 197
5.8.2 Pre-PID Operation ..... 202
5.8.3 PID Operation Sleep Mode ..... 202
5.8.4 PID Switching (PID Openloop) ..... 203
5.9 Auto Tuning ..... 205
5.10 Sensorless Vector Control for Induction Motors ..... 208
5.10.1 Sensorless VectorControl Operation Setting for Induction Motors ..... 211

## Table of Contents

5.10.2 Sensorless VectorControl Operation Guide for Induction Motors. ..... 215
5.11 Sensorless Vector Control for PM (Permanent-Magnet) Syn Motors ..... 217
5.11.1 Detecting the Initial Pole Position ..... 219
5.11.2 Sensorless VectorControl Mode Settings for PM Synchronous Motors ..... 220
5.11.3 Guidelines for Running a PM Synchronous Motor in SensorlessVector Control Mode ..... 225
5.12 Kinetic Energy Buffering Operation ..... 228
5.13 TorqueControl ..... 229
5.14 Energy Saving Operation ..... 233
5.14.1 Manual Energy Saving Operation ..... 233
5.14.2 Automatic Energy Saving Operation. ..... 233
5.15 Speed Search Operation ..... 234
5.16 Auto Restart Settings ..... 238
5.17 Operational Noise Settings (carrier frequency settings) ..... 240
$5.182^{\text {nd }}$ Motor Operation ..... 241
5.19 Supply Power Transition ..... 243
5.20 Cooling Fan Control ..... 244
5.21 Input Power Frequency and Voltage Settings ..... 245
5.22 Read, Write, and Save Parameters ..... 245
5.23 Parameter Initialization ..... 246
5.24 ParameterView Lock ..... 247
5.25 Parameter Lock ..... 248
5.26 Changed Parameter Display ..... 249
5.27 UserGroup ..... 249
5.28 Easy Start On ..... 251
5.29 Config(CNF) Mode ..... 252
5.30 TimerSettings ..... 253
5.31 Brake Control ..... 254
5.32 Multi-Function Output On/Off Control ..... 256
5.33 Press Regeneration Prevention ..... 257

## ENERTRONICA <br> SANTERNO

## Table of Contents

5.34 Analog Output ..... 258
5.34.1 Voltage and CurrentAnalog Output ..... 258
5.34.2 Analog PulseOutput ..... 261
5.35 Digital Output ..... 263
5.35.1 Multi-function Output Terminal and Relay Settings ..... 263
5.35.2 Fault Trip Output using Multi-Function OutputTerminal and Relay ..... 267
5.35.3 Multi-function Output Terminal DelayTime Settings ..... 268
5.36 Keypad Language Settings ..... 269
5.37 Operation State Monitor. ..... 270
5.38 Operation Time Monitor ..... 272
6 Learning Protection Features ..... 274
6.1 Motor Protection ..... 274
6.1.1 Electronic Thermal MotorOverheating Prevention (ETH) ..... 274
6.1.2 Overload Early Warning and Trip ..... 276
6.1.3 Stall Prevention and FluxBraking ..... 277
6.2 Inverter and Sequence Protection ..... 281
6.2.1 Open-phase Protection ..... 281
6.2.2 External Trip Signal ..... 282
6.2.3 Inverter Overload Protection ..... 283
6.2.4 Speed Command Loss ..... 284
6.2.5 Dynamic Braking (DB) Resistor Configuration ..... 286
6.3 Under load Fault Trip and Warning ..... 287
6.3.1 Fan Fault Detection ..... 289
6.3.2 Lifetime Diagnosis of Components ..... 289
6.3.3 Low Voltage Fault Trip ..... 292
6.3.4 Output Block by Multi-Function Terminal ..... 292
6.3.5 Trip Status Reset ..... 293
6.3.6 Inverter Diagnosis State ..... 293
6.3.7 Operation Mode on Option Card Trip ..... 294
6.3.8 No MotorTrip ..... 294
6.3.9 Low Voltage Trip 2 ..... 295
6.4 Fault/Warning List ..... 295

## Table of Contents

7 RS-485 Communication Features ..... 298
7.1 Communication Standards ..... 298
7.2 Communication System Configuration ..... 299
7.2.1 Communication LineConnection ..... 299
7.2.2 Setting Communication Parameters ..... 300
7.2.3 Setting Operation Command and Frequency ..... 301
7.2.4 Command Loss Protective Operation. ..... 302
7.2.5 Setting Virtual Multi-Function Input ..... 303
7.2.6 Saving Parameters Defined by Communication ..... 303
7.2.7 Total Memory Map for Communication ..... 304
7.2.8 Parameter Group for Data Transmission ..... 305
7.3 Communication Protocol ..... 306
7.3.1 Modbus-RTU Protocol ..... 306
7.4 Compatible Common Area Parameter. ..... 309
7.5 Sinus H Expansion Common Area Parameter. ..... 312
7.5.1 Monitoring Area Parameter (Read Only) ..... 312
7.5.2 Control Area Parameter (Read/ Write) ..... 317
7.5.3 Inverter Memory Control Area Parameter (Read and Write) ..... 319
8 Table of Functions ..... 322
8.1 Operation Group ..... 322
8.2 Drive group (PAR $\rightarrow$ dr) ..... 324
8.3 Basic Function group (PAR $\rightarrow$ bA). ..... 329
8.4 Expanded Function group (PAR $\rightarrow$ Ad) ..... 334
8.5 Control Function group (PAR $\rightarrow$ Cn) ..... 340
8.6 Input Terminal Block Function group (PAR $\rightarrow$ In) ..... 348
8.7 Output Terminal Block Function group (PAR $\rightarrow \mathrm{OU}$ ) ..... 353
8.8 Communication Function group (PAR $\rightarrow$ CM) ..... 358
8.9 Application Function group (PAR $\rightarrow$ AP). ..... 363
8.10 Protection Function group (PAR $\rightarrow \mathrm{Pr}$ ) ..... 366
8.11 2nd Motor Function group (PAR $\rightarrow$ M2) ..... 371
8.12 User Sequence group (US) ..... 374

## Table of Contents

8.13 User Sequence Function group(UF) ..... 377
8.14 Groupsfor LCD Keypad Only ..... 397
8.14.1 Trip Mode(TRP Last-x) ..... 397
8.14.2 Config Mode (CNF) ..... 397
9 Troubleshooting ..... 401
9.1 Trips and Warnings ..... 401
9.1.1 FaultTrips ..... 401
9.1.2 Warning Messages ..... 404
9.2 Troubleshooting Fault Trips ..... 405
9.3 Troubleshooting Other Faults ..... 407
10 Maintenance ..... 412
10.1 Regular Inspection Lists ..... 412
10.1.1 Daily Inspections. ..... 412
10.1.2 Annual Inspections. ..... 413
10.1.3 Bi-annual Inspections ..... 415
10.2 Storage and Disposal ..... 416
10.2.1 Storage ..... 416
10.2.2 Disposal ..... 416
11 Technical Specification ..... 417
11.1 Input and Output Specification ..... 417
11.2 Product Specification Details ..... 427
11.3 External Dimensions (IP 20 Type) ..... 430
11.4 External Dimensions (IP 66 Type) ..... 435
11.5 Peripheral Devices Specification ..... 438
11.6 Fuse and Reactor Specifications ..... 439
11.7 Terminal Screw Specification ..... 442
11.8 Braking Resistor Specification ..... 443
11.9 Continuous Rated Current Derating ..... 446
11.10 Heat Emission ..... 449
12 Applying 2T and 4T Drives to Single-Phase Input Application ..... 451
12.1 Introduction ..... 451

## Table of Contents

12.2 Power(HP), Input Current and Output Current ..... 452
12.3 Input Frequency and Voltage Tolerance ..... 453
13 Marking ..... 454
13.1 ULmark ..... 454
13.2 CEmark ..... 454
13.2.1 Low Voltage Directive ..... 454
13.2.2 EMC Directive ..... 454
Index ..... 459

## 1 Preparing the Installation

This chapter provides details on product identification, part names, correct installation and cable specifications. To install the inverter correctly and safely, carefully read and follow the instructions.

### 1.1 Product Identification

The SINUSH Inverter is manufactured in a range of product groups based on drive capacity and power source specifications. Product name and specifications are detailed on the rating plate. The illustration on the next page shows the location of the rating plate. Check the rating plate before installing the product and make sure that the product meets your requirements. For more detailed product specifications, refer to 11.1 Input and Output Specification on page 417.

## Note

Check the product name, open the packaging, and then confirm that the product is free from defects. Contact your supplier if you have any issues or questions about your product.


SANTERNO

| SINUS H 0001 | 4T | B | A2 | K | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |



The motor power is based on 230Vac for models " $2 \mathrm{~S} / \mathrm{T}$ " and on 400 Vac for models " 4 T ", considering the Heavy load condition.

### 1.2 Part Names for IP20 models

The illustration below displays part names for IP20 models. Details may vary between product groups.

## Sizes Eu A, Eu B, Eu C1, Eu C2, A1, A2, B1, B2, C2



## Installing the Inverter

## Sizes D, E, F



Installing the Inverter

## Size G



Installing the Inverter

### 1.3 Part Names for IP66 models

The illustration below displays part names for IP66 models. Details may vary between product groups.

## Full product



Do not operate Disconnect Switch when motor is operating.
Cooling fan is only supported to $\mathbf{5 . 5 \sim 7 . 5 \mathrm { kW }}$ products.

## Front cover removed



## Installing the Inverter

### 1.4 Installation Considerations

Inverters are composed of various precision, electronic devices, and therefore the installation environment can significantly impact the lifespan and reliability of the product. The table below details the ideal operation and installation conditions for the inverter.

| Items | Description |
| :--- | :--- |
| Ambient Temperature* | Heavy Duty: $-10-50^{\circ} \mathrm{C}\left(14-104^{\circ} \mathrm{F}\right)$ Normal Duty: $-10-40^{\circ} \mathrm{C}\left(14-122^{\circ} \mathrm{F}\right)$ |
| Ambient Humidity | $90 \%$ relative humidity (no condensation) |
| Storage Temperature | $-20-65^{\circ} \mathrm{C}\left(-4-149^{\circ} \mathrm{F}\right)$ |
| Environmental Factors | An environment free from corrosive or flammable gases, oil residue <br> or dust |
| Altitude/Vibration | Lower than $1000 \mathrm{~m}(3280 \mathrm{ft})$ above sea level/less than $1 \mathrm{G}\left(9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)$ |
| Air Pressure | $70-106 \mathrm{kPa}$ |

* The ambient temperature is the temperature measured at a point $5 \mathrm{~cm}\left(2^{\prime \prime}\right)$ from the surface of the inverter.



## (1) Caution

Do not allow the ambient temperature to exceed the allowable range while operating the inverter.

## ENERTRONICA <br> SANTERNO

### 1.5 Selecting and Preparing a Site for Installation

When selecting an installation location consider the following points:

- The inverter must be installed on a wall that can support the inverter's weight.
- The location must be free from vibration. Vibration can adversely affect the operation of the inverter.
- The inverter can become very hot during operation. Install the inverter on a surface that is fire-resistant or flame-retardant and with sufficient clearance around the inverter to allow air to circulate. The illustrations below detail the required installation clearances.

- Ensure sufficient air circulation is provided around the inverter when it is installed. If the inverter is to be installed inside a panel, enclosure, or cabinet rack, carefully consider the position of the inverter's cooling fan and the ventilation louver. The cooling fan must be positioned to efficiently transfer the heat generated by the operation of the inverter.

Installing the Inverter


If you are installing multiple inverters in one location, arrange them side-by-side and remove the top covers. The top covers MUST be removed for side-by-side installations. Use a flat head screwdriver to remove the top covers.


## Installing the Inverter

## SANTERNO

- If you are installing multiple inverters, of different ratings, provide sufficient clearance to meet the clearance specifications of the largest inverter.



## ENERTRONICA

SANTERNO

### 1.6 Cable Selection

When you install power and signal cables in the terminal blocks, only use cables that meet the required specification for the safe and reliable operation of the product. Refer to the following information to assist you with cable selection.

## Caution

- Wherever possible use cables with the largest cross-sectional area for mains power wiring, to ensure that voltage drop does not exceed $2 \%$.
- Use copper cables rated for $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for power terminal wiring.
- Use copper cables rated for $300 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for control terminal wiring.


## Ground Cable and Power Cable Specifications

| Sinus H Model (Voltage / Code / kW) |  |  | Ground |  | Power I/0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{mm}^{2}$ | AWG | $\mathrm{mm}^{2}$ |  | AWG |  |
|  |  |  | R/S/T |  | U/V/W | R/S/T | U/V/W |
| 2S | 0001 | 0.4 |  | 3.5 | 12 | 2 | 2 | 14 | 14 |
|  | 0002 | 0.75 |  |  |  |  |  |  |  |
|  | 0003 | 1.5 |  |  |  |  |  |  |  |
|  | 0005 | 2.2 | 3.5 |  |  | 3.5 | 12 | 12 |  |
| $2 T$ | 0001 | 0.4 | 2 |  |  | 2 | 14 | 14 |  |
|  | 0002 | 0.75 |  |  |  |  |  |  |  |
|  | 0003 | 1.5 |  |  |  |  |  |  |  |
|  | 0005 | 2.2 |  |  |  |  |  |  |  |
|  | 0007 | 4 | 3.5 |  |  | 3.5 | 12 | 12 |  |
|  | 0011 | 5.5 | 5.5 | 10 | 6 | 6 | 10 | 10 |  |
|  | 0014 | 7.5 |  |  |  |  |  |  |  |
|  | 0017 | 11 | 14 | 6 | 10 | 10 | 8 | 8 |  |
|  | 0020 | 15 |  |  | 16 | 16 | 6 | 6 |  |
| 4T | 0001 | 0.4 | 2 | 14 | 2 | 2 | 14 | 14 |  |
|  | 0002 | 0.75 |  |  |  |  |  |  |  |
|  | 0003 | 1.5 |  |  |  |  |  |  |  |
|  | 0005 | 2.2 |  |  |  |  |  |  |  |
|  | 0007 | 4 |  |  |  |  |  |  |  |
|  | 0011 | 5.5 | 3.5 | 12 | 2.5 | 2.5 | 14 | 14 |  |
|  | 0014 | 7.5 |  |  | 4 | 4 | 12 | 12 |  |
|  | 0017 | 11 | 8 | 8 |  |  |  |  |  |
|  | 0020 | 15 |  |  | 6 | 6 | 10 | 10 |  |
|  | 0025 | 18.5 | 14 | 6 | 10 | 10 | 8 | 8 |  |
|  | 0030 | 22 |  |  |  |  |  |  |  |
|  | 0034 | 30 | 16 | 5 | 25 | 25 | 4 | 4 |  |

## Installing the Inverter

## Signal (Control) Cable Specifications

| Terminals | Signal Cable |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Without Crimp Terminal Connectors (Bare wire) |  | With Crimp Terminal Connectors (Bootlace Ferrule) |  |
|  | $\mathrm{mm}^{2}$ | AWG | $\mathrm{mm}^{2}$ | AWG |
| $\begin{aligned} & \hline \text { P1-P7*/CM/VR/V1/I2 } \\ & \text { /AO/AO2 [0034 } \\ & \text { model only] } \\ & \text { Q1/EG/24/TI/TO* } \\ & \text { /SA,SB,SC/S+,S--SG } \\ & \hline \end{aligned}$ | 0.75 | 18 | 0.5 | 20 |
| A1/C1/B1,A2/C2 [0034 model only] | 1.0 | 17 | 1.5 | 15 |

## 2 Installing the Inverter

This chapter describes the physical and electrical installation methods, including mounting and wiring of the product. Refer to the flowchart and basic configuration diagram provided below to understand the procedures and installation methods to be followed to install the product correctly.

## Installation Flowchart (Basic Configuration Diagram)

The flowchart lists the sequence to be followed during installation. The steps cover equipment installation and testing of the product. More information on each step is referenced in the steps.
$\square$

Select the Installation Location (p.21)

Mounting the Inverter (p.32)
$\square$
Wiring the Ground Connection (p.42)

Power and Signal Wiring (p.43)

Post-Installation Checks (p.63)
$\square$
Tuming on the Inverter

## Installing the Inverter

## Testing (p.65)

The reterence diagram below shows a typical system configuration showing the inverter and peripheral devices.

Prior to installing the inverter, ensure that the product is suitable for the application (power rating, capacity, etc). Ensure that all of the required peripherals and optional devices (resistor brakes, contactors, noise filters, etc.) are available. For more details on peripheral devices, refer to 11.5 Peripheral Devices Specification on page 438.


## (1) Caution

- Figures in this manual are shown with covers or circuit breakers removed to show a more detailed view of the installation arrangements. Install covers and circuit breakers before operating the inverter. Operate the product according to the instructions in this manual.
- Do not start or stop the inverter using a magnetic contactor, installed on the input power supply.
- If the inverter is damaged and loses control, the machine may cause a dangerous situation. Install an additional safety device such as an emergency brake to prevent these situations.
- High levels of current draw during power-on can affect the system. Ensure that correctly rated circuit breakers are installed to operate safely during power-on situations.
- Reactors can be installed to improve the power factor. Note that reactors may be installed within 10m (33ft) from the power source if the input power exceeds 10 times of inverter capacity. Refer to 11.6 Fuse and Reactor Specifications on page 439 and carefully select a reactor that meets the requirements.


### 2.1 Mounting the Inverter

Mount the inverter on a wall or inside a panel following the procedures provided below. Before installation, ensure that there is sufficient space to meet the clearance specifications, and that there are no obstacles impeding the cooling fan's air flow.

Select a wall or panel suitable to support the installation. Refer to 11.3 External Dimensions (IP 20 Type) on page 430 and check the inverter's mounting bracket dimensions.

1 Use a level to draw a horizontal line on the mounting surface, and then carefully mark the fixing points.
2 Drill the two upper mounting bolt holes, and then install the mounting bolts. Do not fully tighten the bolts at this time. Fully tighten the mounting bolts after the inverter has been mounted.


## Installing the Inverter

## ENERTRONICA <br> SANTERNO

3 Mount the inverter on the wall or inside a panel using the two upper bolts, and then fully tighten the mounting bolts. Ensure that the inverter is placed flat on the mounting surface, and that the installation surface can securely support the weight of the inverter.


SANTERNO

## Note

The quantity and dimensions of the mounting brackets vary based on frame size. Refer to 11.3 External Dimensions (IP 20 Type) on page 430 for detailed information about your model.


Inverters with small frame sizes Eu_A, Eu_B, A1, A2 (0.4-0.8kW) have only two mounting brackets. Inverters with large frame sizes have 4 mounting brackets.

ENERTRONICA
SANTERNO

## Installing the Inverter

## Caution

- Do not transport the inverter by lifting with the inverter's covers or plastic surfaces. The inverter may tip over if covers break, causing injuries or damage to the product. Always support the inverter using the metal frames when moving it.
- Hi-capacity inverters are very heavy and bulky. Use an appropriate transport method that is suitable for the weight.
- Do not install the inverter on the floor or mount it sideways against a wall. The inverter MUST be installed vertically, on a wall or inside a panel, with its rear flat on the mounting surface.

$$
\theta
$$



### 2.2 Cable Wiring

Open the front cover, remove the cable guides and control terminal cover, and then install the ground connection as specified. Complete the cable connections by connecting an appropriately rated cable to the terminals on the power and control terminal blocks.

Read the following information carefully before carrying out wiring connections to the inverter. All warning instructions must be followed.

## (1) Caution

- Install the inverter before carrying out wiring connections.
- Ensure that no small metal debris, such as wire cut-offs, remain inside the inverter. Metal debris in the inverter may cause inverter failure.
- Tighten terminal screws to their specified torque. Loose terminal block screws may allow the cables to disconnect and cause short circuit or inverter failure. Refer to 11.7 Terminal Screw Specification on page 442 for torque specifications.
- Do not place heavy objects on top of electric cables. Heavy objects may damage the cable and result in electric shock.
- The power supply system for this equipment (inverter) is a grounded system. Only use a grounded power supply system for this equipment (inverter). Do not use a TT, TN, IT, or corner grounded system with the inverter.
- The equipment may generate direct current in the protective ground wire. When installing the residual current device (RCD) or residual current monitoring (RCM), only Type B RCDs and RCMs can be used.
- Use cables with the largest cross-sectional area, appropriate for power terminal wiring, to ensure that voltage drop does not exceed $2 \%$.
- Use copper cables rated at $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for power terminal wiring.
- Use copper cables rated at $300 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for control terminal wiring.
- If you need to re-wire the terminals due to wiring-related faults, ensure that the inverter keypad display is turned off and the charge lamp under the front cover is off before working on wiring connections. The inverter may hold a high voltage electric charge long after the power supply has been turned off.


## Installing the Inverter

## Step 1 Front Cover, Control Terminal Cover and Cable Guide

The front cover, control terminal cover and cable guide must be removed to install cables. Refer to the following procedures to remove the covers and cable guide. The steps to remove these parts may vary depending on the inverter model.

## Sizes A, A1, A2, B, C

For the Inverter Size definition refer to page 16.
1 Loosen the bolt that secures the front cover (right side). Push and hold the latch on the right side of the cover. Then remove the cover by lifting it from the bottom and moving it away from the front of the inverter.


2 Remove the bolt that secures the front cover (left side) (1). Push and hold the latch on the left side of the cover. Then remove the cover by lifting it from the bottom and moving it away from the front of the inverter (2).


3 Connect the cables to the power terminals and the control terminals. For cable


## Installing the Inverter

## Sizes D, E, F

For the Inverter Size identification refer to page 16.
1 Loosen the bolt that secures the front cover. Then remove the cover by lifting it from the bottom and away from the front.


2 Push and hold the levers on both sides of the cable guide (1) and then remove the cable guide by pulling it directly away from the front of the inverter (2). In some models where the cable guide is secured by a bolt, remove the bolt first.

## ENERTRONICA

## SANTERNO



3 Push and hold the tab on the right side of the control terminal cover. Then remove the cover by lifting it from the bottom and moving it away from the front of the inverter.


4 Connect the cables to the power terminals and the control terminals. For cable specifications, refer to 1.6 Cable Selection on page 28.

## Installing the Inverter

## Size G

For the Inverter Size identification refer to page 16.
1 Loosen the bolt that secures the terminal cover (©). Push and hold the latch on the right side of the cover (2). Then remove the cover by lifting it from the bottom and moving it away from the front of the inverter.


2 Connect the cables to the power terminals and the control terminals. For cable specifications, refer to $\underline{1.6 \text { Cable Selection on page } 28 .}$

## Note

To connect an LCD keypad, remove the plastic knock-out from the bottom of the front cover (right side) or from the control terminal cover. Then connect the signal cable to the RJ -45 port on the control board.
See the picture in Step 4 Control Terminal Wiring.

## Step 2 Ground Connection

Remove the front cover(s), cable guide, and the control terminal cover. Then follow the instructions below to install the ground connection for the inverter.

1 Locate the ground terminal and connect an appropriately rated ground cable to the terminals. Refer to $\underline{1.6}$ Cable Selection on page $\underline{28}$ to find the ap propriate cable specification for your installation.


2 Connect the other ends of the ground cables to the supply earth (ground) terminal.

## Installing the Inverter

## Note

- 2T products require Class 3 grounding. Resistance to ground must be $<100 \Omega$.
- 4T products require Special Class 3 grounding. Resistance to ground must be $<10 \Omega$.


## © Warning

Install ground connections for the inverter and the motor by following the correct specifications to ensure safe and accurate operation. Using the inverter and the motor without the specified grounding connections may result in electric shock.

## Step 3 Power Terminal Wiring

The following illustration shows the terminal layout on the power terminal block. Refer to the detailed descriptions to understand the function and location of each terminal before making wiring connections. Ensure that the cables selected meet or exceed the specifications in 1.6 Cable Selection on page $\underline{28}$ before installing them.

## (1) Caution

- Tighten terminal screws to their specified torque. Loose terminal screws may allow the cables to disconnect and cause short circuit or inverter failure. Over tightening terminal screws may damage the terminals and cause short circuits and malfunctions.
- Use copper cables rated for $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for power terminal wiring.
- Use copper cables rated for $300 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for control terminal wiring.
- Do not connect two wires in a single terminal for power cable connections.
- Power supply cables must be connected to the R, S, and Tterminals. Connecting power cables to the $\mathrm{U}, \mathrm{V}$, and W terminals will cause internal damage to the inverter. Connect motors to the $\mathrm{U}, \mathrm{V}$, and W terminals. Phase sequence arrangement is not necessary.


## Sizes A, A1, A2



## Sizes B, B1, B2, C



Installing the Inverter

## Sizes D, E, F



## Size G



## Power Terminal Labels and Descriptions

| Terminal Labels | Name | Description |
| :--- | :--- | :--- |
| $\mathrm{R}(\mathrm{L1)/S(L2)/T(L3)}$ | AC power input terminal | Mains supply AC power connections. |
| $\mathrm{P} 2(+) / \mathrm{N}(-)$ | DC link terminal | DC voltage terminals. |
| $\mathrm{P} 1(+) / \mathrm{P} 2(+)$ | DC reactor terminal | DC reactor wiring connection. (When you use <br> the DC reactor, must remove short-bar) [all <br> models except for 0034 model] |
| $\mathrm{P} 2(+) / \mathrm{B}$ | Brake resistor terminals | Brake resistor wiring connection. |
| $\mathrm{P} 3(+) / \mathrm{N}(-)$ | Brake unit terminals | Brake unit wiring connection. [0034 model only] |
| $\mathrm{U} / \mathrm{V} / \mathrm{W}$ | Motor output terminals | 3-phase induction motor wiring connections. |

## Note

- For SINUS H 2S line (Single Phase), the AC Power input terminals to be use are R(L1) and T(L3).
On this line Terminal $\mathrm{S}(\mathrm{L} 2)$ is providerd with no screw.


## Note

- Use STP (Shielded Twisted Pair) cables to connect a remotely located motor with the inverter. Do not use 3 core cables.
- Make sure that the total cable length does not exceed-200m ( 660 ft ). For inverters $<=4.0 \mathrm{~kW}$ capacity, ensure that the total cable length does not exceed 50m (165ft).
- Long cable runs can cause reduced motor torque in low frequency applications due to voltage drop. Long cable runs also increase a circuit's susceptibility to stray capacitance and may trigger over-current protection devices or result in malfunction of equipment connected to the inverter.
- Voltage drop is calculated by using the following formula:

Voltage $\operatorname{Drop}(\mathrm{V})=[\sqrt{3} \mathrm{X}$ cable resistance $(\mathrm{m} / \Omega / \mathrm{m}) \mathrm{X}$ cable length $(\mathrm{m}) \mathrm{X}$ current $(\mathrm{A})] / 1000$

- Use cables with the largest possible cross-sectional area to ensure that voltage drop is minimized over long cable runs. Lowering the carrier frequency and installing a micro surge filter may also help to reduce voltage drop.

| Distance | $<50 \mathrm{~m}$ (165ft) | $<100 \mathrm{~m}$ (330ft) | $>100 \mathrm{~m}$ (330ft) |
| :--- | :--- | :--- | :--- |
| Allowed Carrier Frequency | $<15 \mathrm{kHz}$ | $<5 \mathrm{kHz}$ | $<2.5 \mathrm{kHz}$ |

## Warning

Do not connect power to the inverter until installation has been fully completed and the inverter is ready to be operated. Doing so may result in electric shock.

## Installing the Inverter

## (1) Caution

- Power supply cables must be connected to the R, S, and Tterminals. Connecting power cables to other terminals will damage the inverter.
- Use insulated ring lugs when connecting cables to R/S/T and U/V/W terminals.
- The inverter's power terminal connections can cause harmonics that may interfere with other communication devices located near to the inverter. To reduce interference the installation of noise filters or line filters may be required.
- To avoid circuit interruption or damaging connected equipment, do not install phaseadvanced condensers, surge protection, or electronic noise filters on the output side of the inverter.
- To avoid circuit interruption or damaging connected equipment, do not install magnetic contactors on the output side of the inverter.


## Step 4 Control Terminal Wiring

The illustrations below show the detailed layout of control wiring terminals, and control board switches. Refer to the detailed information provided below and 1.6 Cable Selection on page 28 before installing control terminal wiring and ensure that the cables used meet the required specifications.

<Terminals in IP20 models except for 0034 model (Multiple I/O)>

<Terminals in IP20 model 0034 only (Standard I/O (M))>

<Terminals in IP66 models (Standard I/O) >

## Installing the Inverter

Control Board Switches

| Switch | Description |
| :--- | :--- |
| SW1 | NPN/PNP mode selection switch |
| SW2 | analog voltage/current input terminal selection switch |
| SW3 | analog voltage/current output terminal selection switch |
| SW4 | Terminating Resistor selection switch |

## Connector

| Name | Description |
| :--- | :--- |
| Connector | Connect to LCD keypad |


<Terminals in IP20 models except for 0034 model >

<Terminals in IP20 model 0034 only >

## SANTERNO

## Installing the Inverter


< Terminals in IP66 models >

## Input Terminal Labels and Descriptions

| Function | Label | Name | Description |
| :---: | :---: | :---: | :---: |
| Multi- <br> function terminal configuration | P1-P7 in IP20 models, P1-P5 in IP66 models | Multi-function Input | Configurable for multi-function input terminals. Factory default terminals and setup are as follows: <br> - P1:Fx <br> - P2:Rx <br> - P3:BX <br> - P4:RST <br> - P5:Speed-L <br> - P6:Speed-M <br> - P7:Speed-H <br> (P6 and P7 not available in IP66 models). |
|  | CM | Common Sequence | Common terminal for analog terminal inputs and outputs. |

## Installing the Inverter

| Function | Labe | Name | Description |
| :---: | :---: | :---: | :---: |
| Analog input configuration | VR | Potentiometer frequency reference input | Used to setup or modify a frequency reference via analog voltage or current input. <br> - Maximum Voltage Output: 12 V <br> - Maximum Current Output: 100 mA , <br> - Potentiometer: $1-5 \mathrm{k} \Omega$ |
| Analog input configuration | V1 | Voltage input for frequency reference input | Used to setup or modify a frequency reference via analog voltage input terminal. <br> - Unipolar: 0-10V (12V Max.) <br> - Bipolar: - $10-10 \mathrm{~V}$ ( $\pm 12 \mathrm{~V}$ Max.) |
|  | 12 | Voltage/current input for frequency reference input | Used to setup or modify a frequency reference via analog voltage or current input terminals. <br> Switch between voltage (V2) and current (I2) modes using a control board switch (SW2). <br> V2 Mode: <br> - Unipolar: 0-10V (12V Max.) <br> I2 Mode <br> - Input current: 4-20mA <br> - Maximum Input current: 24 mA <br> - Input resistance: $249 \Omega$ |
|  | TI | Pulse input for frequency reference input (pulse train) | Setup or modify frequency references using pulse inputs from 0 to 32 kHz . <br> - Low Level: 0-0.8V <br> - High Level: 3.5-12V <br> (In case of IP66 models, Pulse input Tl and Multifunction terminal P5 share the same terminal. Set the In. 69 P5 Define to 54(TI).) |
| Safety functionality configuration | SA | Safety input A | Used to block the output from the inverter in an emergency. <br> Conditions: <br> - Normal Operation: Both the SA and SB terminals are connected to the SC terminal. <br> - Output Block: One or both of the SA and SB terminals lose connection with the SC terminal. |
|  | SB | Safety input B |  |
|  | SC | Safety input power source | DC $24 \mathrm{~V},<25 \mathrm{~mA}$ |

## Installing the Inverter

## Output/Communication Terminal Labels and Descriptions

| Function | Label | Name | Description |
| :---: | :---: | :---: | :---: |
| Analog output | AO | Voltage/Current Output | Used to send inverter output information to external devices: output frequency, output current, output voltage, or a DC voltage. Operate switch (SW3) to select the signal output type (voltage or current) at the AO terminal. <br> Output Signal Specifications: <br> - Output voltage: 0-10V <br> - Maximum output voltage/current: $12 \mathrm{~V} / 10 \mathrm{~mA}$ <br> - Output current: 0-20mA (Load resistance: Less than $500 \Omega$ ) <br> - Maximum output current: 24 mA <br> - Factory default output: Frequency |
|  | AO2 [0034 model only] | Analog voltage output terminal | Use to send inverter output information, such as output frequency, output current, output voltage, or DC voltage to external devices. <br> - Output voltage:0-10V <br> - Maximum output voltage/current: $12 \mathrm{~V} / 10 \mathrm{~mA}$ |
|  | TO | Pulse Output | Sends pulse signals to external devices to provide a single output value from the inverter of either: output frequency, output current, output voltage, or DC voltage. <br> Output Signal Specifications: <br> - Output frequency: $0-32 \mathrm{kHz}$ <br> - Output voltage: 0-12V <br> - Factory default output: Frequency (In case of IP66 models, Pulse outputTO and Multifunction output Q1 share the same terminal. Set the OU.33Q1 Define to 38(TO).) <br> When connecting to a pulse between the inus H inverters, <br> - IP20 model $\leftrightarrow \mid P 20$ model: Connect TO $\rightarrow$ $\mathrm{TI}, \mathrm{CM} \rightarrow \mathrm{CM}$ <br> - IP66 model $\leftrightarrow \mid P 66$ model: Connect Q1 $\rightarrow$ P5, EG $\rightarrow$ CM <br> - IP20 model $\leftrightarrow$ IP66 model: Not supported. |
| Digital output | Q1 | Multi-functional | DC 26V, 100 mA or less |


| Function | Label | Name | Description |
| :---: | :---: | :---: | :---: |
|  |  | (open collector) | Factory default output: Run |
|  | EG | Common | Common ground contact for an open collector (with external power source) |
|  | 24 | External 24V power source | Maximum output current: 150 mA |
|  | A1/C1/B1 | Fault signal output | Sends out alarm signals when the inverter's safety features are activated (AC $250 \mathrm{~V}<1 \mathrm{~A}, \mathrm{DC}$ $30 \mathrm{~V}<1 \mathrm{~A}$ ). <br> - Fault condition: A 1 and Cl contacts are connected (B1 and C1 open connection) <br> - Normal operation: B1 and C1 contacts are connected (A1 and C1 open connection) |
|  | A2/C2 [0034 <br> model <br> only] | Multi-functional relay output terminal | The signal is generated while operating. Define and use the multi-functional relay output terminal (Less than AC250 V 5A, Less than DC30 V 5A). |
| Communication | S+/S-/SG | RS-485 signal line | Used to send or receive RS-485 signals. Refer to 7 RS-485 Communication Features on page 298 for more details. |

## Installing the Inverter

## Preinsulated Crimp Terminal Connectors (Bootlace Ferrule)

Use preinsulated crimp terminal connectors to increase reliability of the control terminal wiring. Refer to the specifications below to determine the crimp terminals to fit various cable sizes.


| Cable Spec. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dimensions (mm/inches) |  |  |  |  |  |
| AWG | $\mathrm{mm}^{2}$ | $L^{*}$ | P | d1 | D |
| 26 | 25 | $10.4 / 0.40$ | $6.0 / 0.23$ | $1.1 / 0.042$ | $2.5 / 0.1$ |
|  |  | $12.4 / 0.48$ | $8.0 / 0.31$ |  |  |
| 22 | 0.50 | $12.0 / 0.46$ | $6.0 / 0.23$ | $1.3 / 0.051$ | $3.2 / 0.12$ |
| 20 | 0.75 | $12.0 / 0.46$ | $6.0 / 0.23$ | $1.5 / 0.058$ | $3.4 / 0.13$ |

* If the length ( L ) of the crimp terminals exceeds $12.7 \mathrm{~mm}\left(0.5^{\prime \prime}\right)$ after wiring, the control terminal cover may not close fully.
To connect cables to the control terminals without using crimp terminals, refer to the following illustration detailing the correct length of exposed conductor at the end of the control cable.



## Note

- While making wiring connections at the control terminals, ensure that the total cable length does not exceed 50m (165ft).
- Ensure that the length of any safety related wiring does not exceed 30 m ( 100 ft ).
- Ensure that the cable length between an LCD keypad and the inverter does not exceed 3 m (10ft). Cable connections longer than 3 m ( 10 ft ) may cause signal errors.
- Use ferrite material to protect signal cables from electro-magnetic interference.
- Take care when supporting cables using cable ties, to apply the cable ties no closer than 15 cm ( 6 inches) from the inverter. This provides sufficient access to fully close the front cover.
- When making control terminal cable connections, use a small flat-tip screw driver ( 2.5 mm wide ( $0.1^{\prime \prime}$ ) and 0.4 mm thick ( $0.015^{\prime \prime}$ ) at the tip).



## Step 5 PNP/NPN Mode Selection

The Sinus H inverter supports both PNP (Source) and NPN (Sink) modes for sequence inputs at the terminal. Select an appropriate mode to suit requirements using the PNP/NPN selection switch (SW1) on the control board. Refer to the following information for detailed applications.

## PNP Mode (Source)

Select PNP using the PNP/NPN selection switch (SW1). Note that the factory default setting is NPN mode. CM is is the common ground terminal for all analog inputs at the terminal, and P24 is 24 V internal source. If you are using an external 24 V source, build a circuit that connects the external source (-) and the CM terminal.

## Installing the Inverter



## NPN Mode (Sink)

Select NPN using the PNP/NPN selection switch (SW1). Note that the factory default setting is NPN mode. CM is is the common ground terminal for all analog inputs at the terminal, and P 24 is 24 V internal source.


## Step 6 Disabling the EMC Filter for Power Sources with Asymmetrical Grounding

EMC filter is built in the two products Sinus H 2 S (EN55011 Group 1 Class A = EN 61800-3 C2) and Sinus H 4T (EN55011 Group 2 Class A = EN61800-3 C3). An EMC filter prevents electromagnetic interference by reducing radio emissions from the inverter. EMC filter use is not always recommended, as it increases leakage current. If an inverter uses a power source with an asymmetrical grounding connection, the EMC filter MUST be turned off.


## A Danger

- Do not activate the EMC filter if the inverter uses a power source with an asymmetrical grounding structure, for example a grounded delta connection. Personal injury or death by electric shock may result.
- Wait at least 10 minutes before opening the covers and exposing the terminal connections. Before starting work on the inverter, test the connections to ensure all DC voltage has been fully discharged. Personal injury or death by electric shock may result.


## Installing the Inverter

## Sizes A, A1, A2, B, B1, B2, C, D, E, F

Before using the inverter, confirm the power supply's grounding system. Disable the EMC filter if the power source has an asymmetrical grounding connection. Refer to the figures below to locate the EMC filter on/off terminal and replace the metal bolt with the plastic bolt. If the EMC filter is required in the future, reverse the steps and replace the plastic bolt with the metal bolt to reconnect the EMC filter.

| Steel bolt | Plastic bolt |
| :---: | :---: |
|  | 0 |
|  | EMC OFF |



## Size G

Refer to the figures below to locate the EMC filter on/off terminal and replace the metal bolt with the plastic bolt. If the EMC filter is required in the future, reverse the steps and replace the plastic bolt with the metal bolt to reconnect the EMC filter.

Follow the instructions listed below to disable the EMC filters.

Remove the EMC ground cover located at the bottom of the inverter.


Remove the EMC ground cable from the right terminal (EMC filter-ON / factory default), and connect it to the left terminal (EMC filter-OFF / for power sources with asymmetrical grounding).


If the EMC filter is required in the future, reverse the steps and connect the EMC ground cable to the right terminal to enable the EMC filter.

## Installing the Inverter

## Note

The terminal on the right is used to ENABLE the EMC filter (factory default). The terminal on the left is used to DISABLE the EMC filter (for power sources with asymmetrical grounding).


## Step 7 Selecting the BU200 brake unit [0034 model only]

For the 0034 model inverter an external BU200 brake unit shall be used.
See the following picture for the recommended connection: RE is the brake resistor, FU is a protection fuse.

See 15W0102B500 Motor Drives Accessories - User Manual for further details about BU200.


## Step 8 Re-assembling the Covers and Routing Bracket

Re-assemble the cable routing bracket and the covers after completing the wiring and basic configurations. Note that the assembly procedure may vary according to the product group or frame size of the product.

## Installing the Inverter

### 2.3 Post-Installation Checklist

After completing the installation, check the items in the following table to make sure that the inverter has been safely and correctly installed.

| Items | Check Point | Ref. | Result |
| :---: | :---: | :---: | :---: |
| Installation Location/Power I/O Verification | Is the installation location ap propriate? | p. 21 |  |
|  | Does the environment meet the inverter's operating conditions? | p. 24 |  |
|  | Does the power source match the inverter's rated input? | p. 417 |  |
|  | Is the inverter's rated output sufficient to supply the equipment? <br> (Degraded performance will result in certain circumstances. Refer to 11.9 Continuous Rated Current Derating on page 446 for details. | p. 417 |  |
| PowerTerminal Wiring | Is a circuit breaker installed on the input side of the inverter? | p. 30 |  |
|  | Is the circuit breaker correctly rated? | p. 417 |  |
|  | Are the power source cables correctly connected to the R/S/T terminals of the inverter? <br> (Caution: connecting the power source to the U/V/W terminals may damage the inverter.) | p. 43 |  |
|  | Are the motor output cables connected in the correct phase rotation (U/V/W)? <br> (Caution: motors will rotate in reverse direction if three phase cables are not wired in the correct rotation.) | p. 43 |  |
|  | Are the cables used in the power terminal connections correctly rated? | p. 28 |  |
|  | Is the inverter grounded correctly? | p. 42 |  |
|  | Are the power terminal screws and the ground terminal screws tightened to their specified torques? | p. 43 |  |
|  | Are the overload protection circuits installed correctly on the motors (if multiple motors are run using one inverter)? | - |  |
|  | Is the inverter separated from the power source by a magnetic contactor (if a braking resistor is in use)? | p. 30 |  |
|  | Are advanced-phase capacitors, surge protection and electromagnetic interference filters installed correctly? (These devices MUST not be installed on the output side of the inverter.) | p. 43 |  |

Installing the Inverter

| Items | Check Point | Ref. | Result |
| :---: | :---: | :---: | :---: |
| Control Terminal Wiring | Are STP (shielded twisted pair) cables used for control terminal wiring? |  |  |
|  | Is the shielding of the STP wiring properly grounded? |  |  |
|  | If 3 -wire operation is required, are the multi-function input terminals defined prior to the installation of the control wiring connections? | p. 47 |  |
|  | Are the control cables properly wired? | p. 47 |  |
|  | Are the control terminal screws tightened to their specified torques? | p. 36 |  |
|  | Is the total cable length of all control wiring $<50 \mathrm{~m}$ (165ft)? | p. 55 |  |
|  | Is the total length of safety wiring <30m (100ft)? | p. 55 |  |
| Miscellaneous | Are optional cards connected correctly? |  |  |
|  | Is there any debris left inside the inverter? | p. 36 |  |
|  | Are any cables contacting adjacent terminals, creating a potential short circuit risk? |  |  |
|  | Are the control terminal connections separated from the power terminal connections? |  |  |
|  | Have the capacitors been replaced if they have been in use for $>2$ years? |  |  |
|  | Have the fans been replaced if they have been in use for $>3$ years? |  |  |
|  | Has a fuse been installed for the power source? | p. 439 |  |
|  | Are the connections to the motor separated from other connections? |  |  |

## Note

STP (Shielded Twisted Pair) cable has a highly conductive, shielded screen around twisted cable pairs. STP cables protect conductors from electromagnetic interference.

## Installing the Inverter

### 2.4 Test Run

After the post-installation checklist has been completed, follow the instructions below to test the inverter.

1 Turn on the power supply to the inverter. Ensure that the keypad display light is on.
2 Select the command source.
3 Set a frequency reference, and then check the following:

- If V 1 is selected as the frequency reference source, does the reference change according to the input voltage at VR?
- If V2 is selected as the frequency reference source, is the voltage/current selector switch (SW2) set to voltage, and does the reference change according to the input voltage?
- If 12 is selected as the frequency reference source, is the voltage/current selector switch (SW2) set to current, and does the reference change according to the input current?
4 Set the acceleration and deceleration time.
5 Start the motor and check the following:
- Ensure that the motor rotates in the correct direction (refer to the note below).
- Ensure that the motor accelerates and decelerates according to the set times, and that the motor speed reaches the frequency reference.


## Note

If the forward command ( $F x$ ) is on, the motor should rotate counterclockwise when viewed from the load side of the motor. If the motor rotates in the reverse direction, switch the cables at the U and V terminals.

## Verifying the Motor Rotation

1 On the keypad, set the drv (Frequency reference source) code in the Operation group to 0 (Keypad).
2 Set a frequency reference.
3 Press the [RUN] key. Motor starts forward operation.
4 Observe the motor's rotation from the load side and ensure that the motor rotates
counterclockwise (forward).

If the motor rotates in the reverse direction, two of the U/V/W terminals need to be switched.

(1) Caution

- Check the parameter settings before running the inverter. Parameter settings may have to be adjusted depending on the load.
- To avoid damaging the inverter, do not supply the inverter with an input voltage that exceeds the rated voltage for the equipment.
- Before running the motor at maximum speed, confirm the motor's rated capacity. As inverters can be used to easily increase motor speed, use caution to ensure that motor speeds do not accidently exceed the motor's rated capacity.


## Learning to Perform Basic Operations

## 3 Learning to Perform Basic Operations

This chapter describes

- the keypad layout and functions
- the LCD keypad (graphic keypad) layout and functions [*]

It also introduces parameter groups and codes, required to perform basic operations. The chapter also outlines the correct operation of the inverter before advancing to more complex applications. Examples are provided to demonstrate how the inverter actually operates.

## Note [*]

The LCD keypad is standard in the 0034 model and is an option in all the other models.

### 3.1 About the Keypad

The keypad is composed of two main components - the display and the operation (input) keys. Refer to the following illustration to identify part names and functions.


## ENERTRONICA <br> SANTERNO

### 3.1.1 About the Display

The following table lists display part names and their functions.

| No. | Name | Function |
| :---: | :--- | :--- |
| $\mathbf{1}$ | 7-Segment Display | Displays current operational status and parameter <br> information. |
| $\mathbf{2}$ | SET Indicator | LED flashes during parameter configuration and when the <br> ESC key operates as the multi-function key. |
| $\mathbf{3}$ | RUN Indicator | LED turns on (steady) during an operation, and flashes <br> during acceleration or deceleration. |
| $\mathbf{4}$ | FWD Indicator | LED turns on (steady) during forward operation. |
| $\mathbf{5}$ | REV Indicator | LED turns on (steady) during reverse operation. |

The table below lists the way that the keypad displays characters (letters and numbers).

| $\square$ | 0 | 8 | A | H2 | K | 0 | $u$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 1 | b | B | b | L | 0 | v |
| $\Xi$ | 2 | P | C | $\therefore$ | M | $\because$ | w |
| $\Xi$ | 3 | g | D | m | N | b | X |
| 4 | 4 | E | E | 8 | 0 | 4 | Y |
| 5 | 5 | $F$ | F | $P$ | P | 三 | z |
| 5 | 6 | ${ }_{6}$ | G | 8 | Q | - | - |
| 7 | 7 | 4 | H | r | R | - | - |
| $\square$ | 8 | b | 1 | 5 | S | - | - |
| 9 | 9 | d | J | $\stackrel{B}{8}$ | T | - | - |

SANTERNO

## Learning to Perform Basic Operations

### 3.1.2 Operation Keys

The following table lists the names and functions of the keypad's operation keys.

| Key | Name | Description |
| :---: | :---: | :---: |
| RUN | [RUN] key | Used to run the inverter (inputs a RUN command). |
| $\begin{aligned} & \text { sTop } \\ & \text { Reset } \\ & \hline \end{aligned}$ | [STOP/RESET] key | STOP: stops the inverter. RESET: resets the inverter following fault or failure condition. |
| A | [ $\mathbf{\Delta}]$ key, [ $\mathbf{\nabla}$ ] key | Switch between codes, or to increase or decrease parameter values. |
| $3$ | [ ¢ ] key, [ ] key | Switch between groups, or to move the cursor during parameter setup or modification. |
|  | [ENT] key | Used to select, confirm, or save a parameter value. |
|  | [ESC] key | A multi-function key used to configure different functions, such as: <br> - Jog operation <br> - Remote/Local mode switching <br> - Cancellation of an input during parameter setup |

## Caution

Install a separate emergency stop switch in the circuit. The [STOP/RESET] key on the keypad works only when the inverter has been configured to accept an input from the keypad.

### 3.1.3 Control Menu

The Sinus H inverter control menu uses the following groups.

| Group | Display | Description |
| :---: | :---: | :---: |
| Operation | - | Configures basic parameters for inverter operation. These include reference frequencies and acceleration or deceleration times. Frequencies will only be displayed if an LCD keypad is in use. |
| Drive | 080 | Configures parameters for basic operations. These include jog operation, motor capacity evaluation, torque boost, and other keypad related parameters. |
| Basic |  | Configures basic parameters, including motorrelated parameters and multi-step frequencies. |
| Advanced | 8000 | Configure acceleration or deceleration patterns and to setup frequency limits. |
| Control | $\mathrm{BDO}_{50}$ | Configures sensorless vector - related features. |
| Input Terminal | 080 | Configures input terminal-related features, including digital multi-functional inputs and analog inputs. |
| Output Terminal | $\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 0 \\ 00 & 0\end{array}$ | Configures output terminal-related features such as relays and analog outputs. |
| Communication | P0 | Configures communication features for RS-485 or other communication options. |
| Application |  | Configures PID control-related sequences and operations. |
| Protection | $0_{0}^{00}$ | Configures motor or inverter protection features. |
| Motor 2 (Secondary Motor) | $\bigcirc 00$ | Configures secondary motor related features. The secondary motor (M2) group appears on the keypad only when one of the multi-function input terminals (In.65-71 in IP20 models, In.65-69 in IP66 models) has been set to 26 (Secondary motor). |
| User Sequence | 005 0080 | Used to implement simple sequences with various |
| User Sequence Function |  | function blocks. |

## SANTERNO

## Learning to Perform Basic Operations

### 3.2 Learning to Use the Keypad

The keypad enables movement between groups and codes. It also enables users to select and configure functions. At code level, you can set parameter values to turn on or off specific functions, or decide how the functions will be used. Refer to 8Table of Functions on page 322 to find the functions you need.

Confirm the correct values (or the correct range of the values), and then follow the examples below to configure the inverter with the keypad.

### 3.2.1 Group and Code Selection

Follow the examples below to learn how to switch between groups and codes.


| save the change. |
| :--- |
| Note |
| For some settings, pressing the [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}]$ key will not increase or decrease the code number by |
| 1. Code numbers may be skipped and not be displayed. This is because certain code numbers |
| have been intentionally left blank (or reserved) for new functions to be added in the future. Also |
| some features may have been hidden (disabled) because a certain code has been set to disable |
| the functions for relevant codes. |
| As an example, if Ad. 24 (Frequency Limit) is set to 0 (No), the next codes, Ad. 25 (Freq Limit Lo) |
| and Ad. 26 (Freq Limit Hi), will not be displayed. If you set code Ad. 24 to 1 (Yes) and enable the |
| frequency limit feature, codesAd. 25 and 26 will appear to allow the maximum and minimum |
| frequency limitations to be set up. |

### 3.2.2 Navigating Directly to Different Codes

The following example details navigating to code dr. 95, from the initial code in the Drive group (dr.0). This example applies to all groups whenever you would like to navigate to a specific code number.


| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 1 | Ensure that you are currently at the first code of the Drive group (dr.0). | 510.0.70 |
| 2 | Press the [ENT] key. Number '9' will flash | 易 |
| 3 | Press the [ $\mathbf{\nabla}$ ] key to display ' 5 ,' the first $1 s$ ' place of the group destination, '95.' | 9 |
| 4 | Press the [ $\mathbf{4}$ ] key to move to the $10 s^{\prime}$ place. <br> The cursor will move to the left and ' 05 ' will be displayed. This time, the number ' 0 ' will be flashing. | 5 |

## Learning to Perform Basic Operations

| Step | Instruction | Keypad Display |
| :---: | :--- | :---: |
| $\mathbf{5}$ | Press the [ $\mathbf{\Delta}$ ] key to increase the number from '0' to '9,' the <br> 10s place digit of the destination, '95.' | 0 |
| $\mathbf{6}$ | Press the [ENT] key. <br> Code dr.95 is displayed. | 0 |

### 3.2.3 Setting Parameter Values

Enable or disable features by setting or modifying parameter values for different codes. Directly enter setting values, such as frequency references, supply voltages, and motor speeds. Follow the instructions below to learn to set or modify parameter values.

| Step | Instruction | Keypad Display |
| :--- | :--- | :--- |
| $\mathbf{1}$ |  |  |
| Select the group and code to setup or |  |  |
| modify parameter settings, and then press |  |  |
| the [ENT] key. |  |  |
| The first number on the right side of the |  |  |
| display will flash. |  |  |

## Note

- A flashing number on the display indicates that the keypad is waiting for an input from the user. Changes will be saved when the [ENT] key is pressed while the number is flashing. The setting change will be canceled if you press any other key.
- Each code's parameter values have default features and ranges specified. Refer to 8Table of Functions on page 322 for information about the features and ranges before setting or modifying parameter values.


### 3.2.4 Configuring the [ESC] Key

The [ESC] key is a multi-functional key that can be configured to carry out a number of different functions. Refer to 4.6 Local/Remote Mode Switching on page 136 for more information about the other functions of the [ESC] key. The following example shows how to configure the [ESC] key to perform a jog operation.

ENT


## Learning to Perform Basic Operations

| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 1 | Ensure that you are currently at the first code of the Operation group, and that code 0.00 (Command Frequency) is displayed. |  |
| 2 | Press the [ ] key. <br> You have moved to the initial code of the Drive group (dr.0). | $00_{00}^{00}$ |
| 3 | Press the [ $\mathbf{\Delta}$ ] or [ $\mathbf{v}$ ] key to select code 90 (ESC key configuration), and then press the [ENT] key. Code dr. 90 currently has an initial parameter value of, 0 (adjust to the initial position). |  |
| 4 | Press the [ $\mathbf{\Delta}$ ] key to modify the value to 1 (Jog key) and then press the [ENT] key. <br> The new parameter value will flash. | 0 |
| 5 | Press the [ENT] key again to save changes. | - |

## Note

- If the code dr. 90 (ESC key configuration) is set to 1 (JOG Key) or 2 (Local/Remote), the SET indicator will flash when the [ESC] key is pressed.
- The factory default setting for code dr. 90 is 0 (move to the initial position). You can navigate back to the initial position (code 0.00 of the Operation group) immediately, by pressing the [ESC] key while configuring any codes in any groups.


### 3.3 Actual Application Examples

### 3.3.1 Acceleration Time Configuration

The following is an example demonstrating how to modify the ACC (Acceleration time) code value (from 5.0 to 16.0) from the Operation group.


| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 1 | Ensure that the first code of the Operation group is selected, and code 0.00 (Command Frequency) is displayed. |  |
| 2 | Press the [ $\mathbf{\Delta}$ ] key. <br> The display will change to the second code in the Operation group, the ACC (Acceleration Time) code. | $\begin{array}{llll}0 & 0 \\ 80 & 0 & 0 \\ 80 & 0 & 0\end{array}$ |
| 3 | Press the [ENT] key. <br> The number ' 5.0 ' will be displayed, with '0' flashing. This indicates that the current acceleration time is set to 5.0 seconds. The flashing value is ready to be modified by using the keypad. | E. 0.0 |
| 4 | Press the [ 4] key to change the first place value. <br> ' 5 ' will be flashing now. This indicates the flashing value, ${ }^{\prime} 5$ ' is ready to be modified. | (1) |
| 5 | Press the [ $\mathbf{\Delta}$ ] key to change the number ' 5 ' into ' 6 ', the first place value of the target number '16.' |  |
| 6 | Press the [ 4 ] key to move to the 10s, place value. <br> The number in the 10 s position, ' 0 ' in ' 06 ' will start to flash |  |
| 7 | Press the [ $\mathbf{\Delta}$ ] key to change the number from ' 0 ' to ' 1 ', to | ( |

## Learning to Perform Basic Operations

|  | match the 10s place value of the target number'16,' and then <br> press the [ENT] key. <br> Both digits will flash on the display. |  |
| :--- | :--- | :--- |
| $\mathbf{8}$ | Press the [ENT] key once again to save changes. <br> 'ACC' will be displayed. The change to the acceleration time <br> setup has been completed. |  |

### 3.3.2 Frequency Reference Configuration

The following is an example to demonstrate configuring a frequency reference of $30.05(\mathrm{~Hz})$ from the first code in the Operation group (0.00).


| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 1 | Ensure that the first code of the Operation group is selected, and the code 0.00 (Command Frequency) is displayed. |  |
| 2 | Press the [ENT] key. <br> The value, 0.00 will be displayed with the ' 0 ' in the $1 / 100$ s place value flashing. |  |
| 3 | Press the [ 4 ] key 3 times to move to the 10s place value. The '0' at the 10 s place value will start to flash. | (00\% |
| 4 | Press the [ $\mathbf{\Delta}$ ] key to change it to ' 3 ,' the 10 s place value of the target frequency, '30.05.' |  |
| 5 | Press the [ $\quad$ ] key 3 times. <br> The '0' at the $1 / 100$ s place position will flash. |  |
| 6 | Press the [ $\mathbf{\Delta}$ ] key to change it to ' 5 ,' the $1 / 100$ place value of the target frequency, '30.05,' and then press the [ENT] key. The parameter value will flash on the display. |  |
| 7 | Press the [ENT] key once again to save changes. <br> Flashing stops. The frequency reference has been configured to 30.05 Hz . | こrrrrs |

## Note

- A flashing number on the display indicates that the keypad is waiting for an input from the user. Changes are saved when the [ENT] key is pressed while the value is flashing. Changes will be canceled if any other key is pressed.
- The Sinus H inverter keypad display can display up to 4 digits. However, 5-digit figures can be used and are accessed by pressing the [ < ] or [ ] key, to allow keypad input.


### 3.3.3 Jog Frequency Configuration

The following example demonstrates how to configure Jog Frequency by modifying code 11 in the Drive group (Jog Frequency) from $10.00(\mathrm{~Hz})$ to $20.00(\mathrm{~Hz})$. You can configure the parameters for different codes in any other group in exactly the same way.


| Step | Instruction | Keypad Display |
| :---: | :--- | :--- |
| $\mathbf{1}$ | Go to code 11(J og Frequency) in the Drive group. |  |
| $\mathbf{2}$ | Press the [ENT] key. <br> The current J og Frequency value (10.00) for code dr.11 is <br> displayed. |  |
| $\mathbf{3}$ | Press the [ 4 ] key 3 times to move to the 10s place value. <br> Number '1' at the 10s place position will flash. | Press the [ $\mathbf{A}$ ] key to change the value to '2,' to match the 10s <br> place value of the target value'20.00,' and then press the <br> [ENT] key. <br> All parameter digits will flash on the display. |
| $\mathbf{5}$ | Press the [ENT] key once again to save the changes. <br> Code dr.11 will be displayed. The parameter change has been <br> completed. |  |

## Learning to Perform Basic Operations

## 3．3．4 Initializing All Parameters

The following example demonstrates parameter initialization using code dr． 93 （Parameter Initialization）in the Drive group．Once executed，parameter initialization will delete all modified values for all codes and groups．


| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 1 | Go to code 0 （Jog Frequency）in the Drive group． | 080.8 |
| 2 | Press the［ENT］key． <br> The current parameter value（9）will be displayed． | 品 |
| 3 | Press the［q］key to change the first place value to＇ 3 ＇of the target code，＇93．＇ | 硣 |
| 4 | Press the［ 4］key to move to the 10s place position． ＇03＇will be displayed． | － 010 |
| 5 | Press the［ $\mathbf{\Delta}$ ］or［ $\mathbf{\nabla}$ ］key to change the＇ 0 ＇to＇ 9 ＇of the target code，＇93．＇ | 号 9 |
| 6 | Press the［ENT］key． Code dr． 93 will be displayed． | 090． $0_{0}$ |
| 7 | Press the［ENT］key once again． <br> The current parameter value for code dr． 93 is set to 0 （Do not initialize）． | $\xrightarrow{08}$ |
| 8 | Press the［ $\mathbf{\Delta}$ ］key to change the value to 1 （All Grp），and then press the［ENT］key． <br> The parameter value will flash． | $0$ |
| 9 | Press the［ENT］key once again． <br> Parameter initialization begins．Parameter initialization is complete when code dr． 93 reappears on the display． | 090.8 |

## Note

Following parameter initialization，all parameters are reset to factory default values．Ensure that parameters are reconfigured before running the inverter again after an initialization．

Frequency Setting (Keypad) and Operation (via Terminal Input)

| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 1 | Turn on the inverter. |  |
| 2 | Ensure that the first code of the Operation group is selected, and code 0.00 (Command Frequency) is displayed, then press the [ENT] key. <br> The first digit on the right will flash. |  |
| 3 | Press the [ $\mathbf{4}$ ] key 3 times to go to the 10 s place position. <br> The number '0' at the 10 s place position will flash. |  |
| 4 | Press the [ $\mathbf{\Delta}$ ] key to change it to 1 , and then press the [ENT] key. <br> The parameter value ( 10.00 ) will flash. |  |
| 5 | Press the [ENT] key once again to save changes. A change of reference frequency to 10.00 Hz has been completed. |  |
| 6 | Refer to the wiring diagram at the bottom of the table, and close the switch between the P1 (FX) and CM terminals. The RUN indicator light flashes and the FWD indicator light comes on steady. The current acceleration frequency is displayed. |  |
| 7 | When the frequency reference is reached ( 10 Hz ), open the switch between the P1 (FX) and CM terminals. <br> The RUN indicator light flashes again and the current deceleration frequency is displayed. When the frequency reaches 0 Hz , the RUN and FWD indicator lights turn off, and the frequency reference $(10.00 \mathrm{~Hz})$ is displayed again. |  |



## Note

The instructions in the table are based on the factory default parameter settings. The inverter may not work correctly if the default parameter settings are changed after the inverter is purchased. In such cases, initialize all parameters to reset the values to factory default parameter settings before following the instructions in the table (refer to 5.23 Parameter Initialization on page 246).

SANTERNO

## Learning to Perform Basic Operations

### 3.3.5 Frequency Setting (Potentiometer) and Operation (Terminal Input)

| Step | Instruction | Keypad Display |
| :---: | :--- | :--- |
| $\mathbf{1}$ | Turn on the inverter. |  |


[Wiring Diagram]

[Operation Pattern]

## Note

The instructions in the table are based on the factory default parameter settings. The inverter may not work correctly if the default parameter settings are changed after the inverter is purchased. In such cases, initialize all parameters to reset the factory default parameter settings before following the instructions in the table (refer to 5.23 Parameter Initialization on page 246).
3.3.6 Frequency Setting (Potentiometer) and Operation (Keypad)

| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 1 | Turn on the inverter. | - |
| 2 | Ensure that the first code of the Operation group is selected, and the code 0.00 (Command Frequency) is displayed. |  |
| 3 | Press the [ $\mathbf{A}$ ] key 4 times to go to the drv code. | 510000 |
| 4 | Press the [ENT] key. <br> The drv code in the Operation group is currently set to 1 (Analog Terminal). | 0 |
| 5 | Press the [ $\boldsymbol{\nabla}$ ] key to change the parameter value to 0 (Keypad), and then press the [ENT] key. The new parameter value will flash. | 080 080 |
| 6 | Press the [ENT] key once again. <br> The drv code is displayed again. The frequency input has been configured for the keypad. | 18000 |
| 7 | Press the [ $\mathbf{\Delta}$ ] key. <br> To move to the Frq (Frequency reference source) code. | 80000 |

## Learning to Perform Basic Operations

| Step | Instruction | Keypad Display |
| :---: | :---: | :---: |
| 8 | Press the [ENT] key. <br> The Frq code in the Operation group is set to 0 (Keypad). | P100 |
| 9 | Press the [ $\mathbf{\Delta}]$ key to change it to 2 (Potentiometer), and then press the [ENT] key. <br> The new parameter value will flash. | $\square^{7}$ |
| 10 | Press the [ENT] key once again. <br> The Frq code is displayed again. The frequency input has been configured for potentiometer. | 8080 |
| 11 | Press the [ $\mathbf{\nabla}$ ] key 4 times. <br> Returns to the first code of the Operation group (0.00), <br> From here frequency setting values can be monitored. |  |
| 12 | Adjust the potentiometer to increase or decrease the frequency reference to 10 Hz . | - |
| 13 | Press the [RUN] key on the keypad. <br> The RUN indicator light flashes and the FWD indicator light comes on steady. The current acceleration frequency is displayed. | SET |
| 14 | When the frequency reaches the reference $(10 \mathrm{~Hz})$, press the [STOP/RESET] key on the keypad. <br> The RUN indicator light flashes again and the current deceleration frequency is displayed. When the frequency reaches 0 Hz , the RUN and FWD indicator lights turn off, and the frequency reference $(10.00 \mathrm{~Hz})$ is displayed again. |  |


[Wiring Diagram]

[Operation Pattern]

## Note

The instructions in the table are based on the factory default parameter settings. The inverter may not work correctly if the default parameter settings are changed after the inverter is purchased. In such cases, initialize all parameters to reset the factory default parameter settings before following the instructions in the table (refer to 5.23 Parameter Initialization on page 246).

### 3.4 Monitoring the Operation

### 3.4.1 Output Current Monitoring

The following example demonstrates how to monitor the output current in the Operation group using the keypad.


| Step | Instruction | Keypad Display |
| :---: | :--- | :---: |
| $\mathbf{1}$ | Ensure that the first code of the Operation group is <br> selected, and the code 0.00 (Command Frequency) is <br> displayed. |  |
| $\mathbf{2}$ | Press the [ $\mathbf{A}$ ] or [ $\mathbf{\nabla}$ ] key to move to the Cur code. |  |
| $\mathbf{3}$ | Press the [ENT] key. <br> The output current (5.0A) is displayed. |  |
| $\mathbf{4}$ | Press the [ENT] key again. <br> Returns to the Cur code. |  |

## Note

You can use the dCL (DC link voltage monitor) and vOL (output voltage monitor) codes in the Operation group in exactly the same way as shown in the example above, to monitor each function's relevant values.

## ENERTRONICA <br> SANTERNO

## Learning to Perform Basic Operations

### 3.4.2 Fault Trip Monitoring

The following example demonstrates how to monitor fault trip conditions in the Operation group using the keypad.


| Step | Instruction | Keypad Display |
| :---: | :--- | :--- |
| $\mathbf{1}$ | Refer to the example keypad display. <br> An over current trip fault has occurred. |  |
| $\mathbf{2}$ | Press the [ENT] key, and then the [ $\mathbf{A}]$ key. <br> The operation frequency at the time of the fault $(30.00 \mathrm{~Hz})$ is <br> displayed. | Press the [ $\mathbf{A}]$ key. <br> The output current at the time of the fault (5.0A) is displayed. |
| $\mathbf{4}$ | Press the [ $\mathbf{A}$ ] key. <br> The operation status at the time of the fault is displayed. ACC <br> on the display indicates that the fault occurred during <br> acceleration. | Press the [STOP/RESET] key. <br> The inverter resets and the fault condition is cleared. The <br> frequency reference is displayed on the keypad. |

SANTTERNO

## Note

- If multiple fault trips occur at the same time, a maximum of 3 fault trip records can be retrieved as shown in the following example.

- If a warning condition occurs while running at a specified frequency, the current frequency and the 0 opros signal will be displayed alternately, at 1 second intervals. Refer to 6.3 Under load Fault Trip and Warning on page 287 for more details.


## ENERTRONICA <br> SANTERNO

### 3.5 About the LCD keypad (graphic keypad)

The LCD keypad (graphic keypad) is composed of two main components - the LCD graphic display and the operation (input) keys. Refer to the following illustration to identify part names and functions.

### 3.5.1 Operation Keys

The following table lists the names and functions of the keypad's operation keys.


|  | Name | Description |
| :--- | :--- | :--- |
| [MODE] Key | Used to switch between modes. |  |

3.5.2 Bracket dimensions and mounting


### 3.5.3 About the Display

Monitor mode display


Parameter settings display


## Learning to Perform Basic Operations

Names displayed in monitor mode and parameter settings

| No. | Names displayed in monitor mode | No. | Names displayed in parameter <br> settings |
| :--- | :--- | :--- | :--- |
| 1 | Mode | 1 | Mode |
| 2 | Operating/frequency command | 2 | Group |
| 3 | Multi-functional key settings | 3 | Multi-functional key settings |
| 4 | Inverter operation status | 4 | Inverter operation status |
| 5 | Items displayed in the status window | 5 | Items displayed in the status window |
| 6 | Monitor mode display 1 | 6 | Display parameters |
| 7 | Monitor mode display 2 | 7 | Available settings range |
| 8 | Monitor mode display 3 | 8 | Existing setting values |
| 9 | Monitor mode cursor | 9 | Factory default values |
|  |  | 10 | Code numbers and names |

## Display details

| No. | Name | Display | Description |
| :---: | :---: | :---: | :---: |
| 1 | Mode | MON | Monitor Mode |
|  |  | PAR | Parameter Mode |
|  |  | TRP | Trip Mode |
|  |  | CNF | Config Mode |
| 2 | Operation commands | K | Keypad operation command |
|  |  | 0 | Field Bus communication option operation command |
|  |  | A | Application option operation command |
|  |  | R | Internal 485 operation command |
|  |  | T | Terminal operation command |
|  | Frequency commands | K | Keypad frequency command |
|  |  | V | V1 input frequency command |
|  |  | P | Pulse input frequency command |
|  |  | U | Frequency command for UP operation (Up - Down operation) |
|  |  | D | Frequency command for DOWN operation (Up Down operation) |



## Learning to Perform Basic Operations

### 3.5.4 Display Modes

The Sinus H inverter uses 5 modes to monitor or configure different functions. The parameters in Parameter mode are divided into smaller groups of relevant functions. Press the [Mode] key to change to Parameter mode.


## ENERTRONICA

SANTERNO

## Table of Display Modes

The following table lists the 5 display modes used to control the inverter functions.

| Mode Name | Keypad <br> Display | Description |
| :--- | :--- | :--- |
| Monitor mode | MON | Displays the inverter's operation status information. In <br> this mode, information including the inverter's frequency <br> reference, operation frequency, output current, and <br> voltage may be monitored. |
| Parameter mode | PAR | Used to configure the functions required to operate the <br> inverter. These functions are divided into 14 groups <br> based on purpose and complexity. |
| Trip mode | TRP | Used to monitor the inverter's fault trip information, <br> including the previous fault trip history. <br> When a fault trip occurs during inverter operation, the <br> operation frequency, output current, and output voltage <br> of the inverter at the time of the fault may be monitored. <br> This mode is not displayed if the inverter is not at fault <br> and fault trip history does not exist. |
| Config mode | CNF | Used to configure the inverter features that are not <br> directly related to the operation of the inverter. The <br> settings you can configure in the Config mode include <br> keypad display language options, monitor mode <br> environment settings, communication module display <br> settings, and parameter duplication and initialization. |

## Learning to Perform Basic Operations

## Parameter Setting Mode

The following table lists the functions groups under Parameter mode.

| Function Group <br> Name | Keypad <br> Display | Description |
| :--- | :--- | :--- |
| Drive | DRV | Configures basic operation parameters. These include <br> ACC/Dec time settings, operation command settings, <br> and functions necessary for operation. |
| Basic | ADV | Configures basic operation parameters. These <br> parameters include motor parameters and multi-step <br> frequency parameters. |
| Advanced | CON | Configures acceleration or deceleration patterns, <br> frequency limits, energy saving features, and, <br> regeneration prevention features. |
| Control | Configures the features related to speed search and <br> KEB (kinetic energy buffering). |  |
| Input Terminal | IN | Configures input terminal-related features, including <br> digital multi-functional inputs and analog inputs. |
| Output Terminal | Configures output terminal-related features, <br> including digital multi-functional outputs and analog <br> outputs. |  |
| Communication | COM | Configures the communication features for the RS- <br> 485, Modbus-RTU. <br> Optional communication module related features <br> may be configured as well, if one is installed. |
| Application | APP | Configures functions related to auto sequence <br> operation and PID control. |
| Protection | PRT | Configures motor and inverter protection features. |
| Motor 2 (Secondary | M2 | Configures the secondary motor-related features. |
| motor) | User Sequence | USS | | User Sequence |
| :--- |
| Function | USF $\quad$| Used to implement simple sequences with various |
| :--- |
| function blocks. |

## ,

SANTIERNO

### 3.6 Learning to Use the LCD keypad (graphic keypad)

The LCD keypad (graphic keypad) enables movement between groups and codes. It also enables users to select and configure functions. At code level, you can set parameter values to turn specific functions on or off or decide how the functions will be used. For detailed information on the codes in each function group, refer to 8 . Table of Functions on page 322. Confirm the correct values (or the correct range of the values), then follow the examples below to configure the inverter with the keypad.

## Note

- The graphic keypad may be remoted up to a maximum allowable distance of 3 m .


### 3.6.1 Display Mode Selection

The following figure illustrates how the display modes change when you press the [Mode] button on the keypad. You can continue to press the [Mode] key until you get to the desired mode.

User mode and Trip mode are not displayed when all the inverter settings are set to the factory default (User mode must be configured before it is displayed on the keypad, and Trip mode is displayed only when the inverter is at fault, or has previous trip fault history).


## Learning to Perform Basic Operations

## Mode selection in factory default condition

| MON $T / K$ STP ${ }^{0.0 \mathrm{Kz}}$ <br>  $\mathbf{0 . 0 ~ H z}$ <br>  0.0 A <br>  $\mathbf{0 ~ V}$ | - When the power is turned on, Monitor mode is displayed. <br> - Press the [MODE] key. |
| :---: | :---: |
| PAR $\rightarrow$ DRV 图 STP 0.0 Hz 00 Jump Code $\quad 9 \mathrm{CODE}$ 01 Chnd Frequency 02 Cnd Torque $0 . \mathrm{Hz}$ | - Parameter mode <br> - Press the [MODE] key. |
| CNF 图 STP 0.0 Hz <br> 00 Jurnp Code 40 CODE  <br> 01 Language Sel English  <br> 02 LCD Contrast   <br> $\square \square \square$    | - Config (CNF) mode <br> - Press the [MODE] key. |
| $\begin{array}{cl} \text { MON } & T / K \text { STP }^{0.0 \mathrm{~Hz}} \\ & \mathbf{0 . 0 ~ H z} \\ & \mathbf{0 . 0 ~ A} \\ & \mathbf{0 V} \end{array}$ | - Monitor mode is displayed again. |

## ENERTRONICA

SANTERNO

## Switching between groups when Trip mode is added

Trip mode is accessible only when the inverter has trip fault history. Refer to 4. Learning Basic Features on page 113 for information about monitoring faults.


- Monitor mode is displayed again.


## ENERTRONICA <br> SANTERNO

## Learning to Perform Basic Operations

### 3.6.2 Switching Groups

Press the [MODE] key to display a specific mode. Modes displayed change in the following order:


## ENERTRONICA

SANTERNO

## Switching between Groups in Parameter Display Mode

After entering Parameter mode from Monitor mode, press the [ $\bullet$ ] key to change the display as shown below. Press the [ $\varangle]$ key to return to the previous mode.

| MON $T / K$ STP $^{0.0 \mathrm{~Hz}}$ <br>  0.0 Hz <br>  0.0 A <br>  0 V | - When the power is turned on, Monitor mode is displayed. <br> - Press the [MODE] key. |
| :---: | :---: |
|  | - Parameter mode <br> - Drive group is displayed. <br> - Press the [ ] key. |
|  | - Basic group (BAS) <br> - Press the [ ] key. |
| PAR $\rightarrow A D V$ STP 0.0 Hz  <br> 00 Jurnip Code 24 CODE <br> 01 Acc Pattern Linear <br> 02 Dec Pattern Linear | - Advanced group (ADV) <br> - Press the [ ] key seven times. |
| PAR $\rightarrow$ PRT N STP 0.0 Hz <br> Uu Jurmp Code 40 CODE <br> 04 Load Duty Heavy Duty <br> 05 Phase Loss Chk  <br>   $\square$ | - Protection group (PRT) <br> - Press the [ ] key. |
| PAR $\rightarrow$ DRV 团 STP 0.0 Hz 00 Jump Code 9 CODE 01 Cmd Frequency 0.00 Hz 02 Cind Torque. $0.0 \%$ | - Parameter mode Drive group (DRV) is displayed again. |

SANTERNO

## Learning to Perform Basic Operations

### 3.6.3 Navigating through the Codes (Functions)

## Code Navigation in Monitor mode

In monitor mode, press the [ $\mathbf{\Delta}$ ] [ $\mathbf{\nabla}$ key to display frequency, the output current, or voltage according to the cursor position.

| MON $T / K$ NTP 0.0 Hz <br> Frequency $0,00 \mathrm{~Hz}$ <br> $\mathbf{0 . 0 ~ A}$  <br> $0 \mathbf{~ V}$  | - When the power is turned on, Monitor mode is displayed. <br> - The cursor appears to the left of the frequency information. <br> - Press the [ $\boldsymbol{\nabla}$ ] key. |
| :---: | :---: |
|  | - Information about the second item in Monitor mode (Output Current) is displayed. <br> - Wait for 2 seconds until the information on the display disappears. |
| MON $T / K$ STP $^{0.0 \mathrm{~Hz}}$ <br>  0.0 Hz <br>  0.0 A <br>  0 V | - Information about the second item in Monitor mode (Output Current) disappears and the cursor reappears to the left of the second item. <br> - Press the [ $\mathbf{V}$ ] key. |
|  | - Information about the third item in Monitor mode (Output Voltage) is displayed. <br> - Wait for 2 seconds until the information on the display disappears. |
| MON $T / K$ <br>  NTP ${ }^{0.0 \mathrm{~Hz}}$ <br>  $\mathbf{0 . 0 ~ H z}$ <br>  $\mathbf{0 . 0 ~ A}$ <br>  $\mathbf{0 ~ V}$ | - Information about the third item in Monitor mode (Output Voltage) disappears and the cursor appears to the left of the third item. <br> - Press the [ $\mathbf{\nabla}$ ] key twice. |



- Information about the first item in Monitor mode (Frequency) is displayed.

- Information about the first item in Monitor mode (Frequency) disappears and the cursor appears to the left of the first item.


## Code Navigation in Parameter mode

The following examples show you how to move through codes in different function groups (Drive group and Basic group) in Parameter mode. In parameter mode, press the [ $\mathbf{\Delta}$ ] or [ $\boldsymbol{\nabla}$ ] key to move to the desired functions.


- When the power is on, monitor mode is displayed.
- Press the [MODE] key.

- Basic group is displayed.
- Press the [ $\mathbf{\Delta}$ ] or [ $\boldsymbol{\nabla}$ ] key to move to the desired codes and configure the inverter functions.


## Learning to Perform Basic Operations

### 3.6.4 Navigating Directly to Different Codes

Parameter mode and Config mode allow direct jumps to specific codes. The code used for this feature is called the Jump Code. The Jump Code is the first code of each mode. The Jump Code feature is convenient when navigating for a code in a function group that has many codes.

The following example shows how to navigate directly to code DRV- 09 from the initial code (DRV-00 Jump Code) in the Drive group.


- The Drive group (DRV) is displayed in Parameter mode. Make sure that the fist code in the Drive group (DRV 00 Jump Code) is currently selected.
- Press the [PROG/ENT] key.

- Press the [ $\mathbf{\Delta}$ ] key to increase the number to 9 , and then press the [PROG/ENT] key.

- DRV-09 (Control Mode) is displayed.
- Press the [ESC] key to go back to the initial code of the Drive group.


### 3.6.5 Parameter settings

## Parameter settings available in Monitor mode

The Sinus H inverter allows basic parameters to be modified in Monitor mode. The following example shows how to set the frequency.


- Make sure that the cursor is at the frequency reference item and that the frequency setting is set to 'Keypad' in DRV-09.
- Press the [PROG/ENT] key.
- When the cursor is on the frequency reference item, detailed information is displayed and the cursor flashes on the input line.
- Press the shift key to go to the desired frequency.

- Press the [ $\mathbf{\Delta}$ ] key to set the frequency to 10 Hz .
- Press the [PROG/ENT] key.

- The frequency is set to 10 Hz .


## Learning to Perform Basic Operations

## Parameter settings in other modes and groups

The following example shows how to change the frequency in the Drive group. This example can also be applied to other modes and groups.


- DRV-01 code is selected.
- Press the [PROG/ENT] key.

- The frequency is changed to 10 Hz .


### 3.6.6 Monitoring the Operation

## How to use Monitor mode

There are 3 types of items that may be monitored in Monitor mode. Some items, including frequency, may be modified. Users can select the items to be displayed in Config mode (CNF).

| MON $T / K$ 四 STP 0.0 Hz 10.0 Hz 0.0 A 0 V | - Monitor mode <br> - Frequency, current, and voltage are set as the default monitored items. <br> - The target frequency is displayed when the inverter is stopped. The operation frequency is displayed while operating. |
| :---: | :---: |
|  | - Configure the items to be displayed in Config mode (CNF) 21~23. <br> - Press the [ $\boldsymbol{\nabla}$ ] key to go to 23. |
| CNF N STP 0.0 Hz <br> 21 Monitor Line-1 <br> 22 Monequency <br> 22 Monitor Line-2 <br> 23 Monitor Linut Current | - Press the[PROG/ENT] key to change 23 to output power. |
| $\begin{array}{ll} \text { MON TK } & \text { © STp } \\ & \mathbf{0 . 0} \mathbf{0 . 0 H z} \\ & \mathbf{0 . 0} \mathbf{~ A} \\ & \mathbf{0 . 0} \mathbf{~ k W} \end{array}$ | - Press the[ESC] key to ensure that the third item in Monitor mode is changed to output power. |

## Learning to Perform Basic Operations

## Items available for monitoring

| Mod e | Numbe r | Display | Setting Range |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20 | Anytime Para | 0 | Frequency | 0: Frequency |
|  | 21 | Monitor Line-1 | 1 | Speed | 0: Frequency |
|  | 22 | Monitor Line-2 | 2 | Output Current | 2:Output Current |
|  |  |  | 3 | Output Voltage |  |
|  |  |  | 4 | Output Power |  |
|  |  |  | 5 | WHour Counter |  |
|  |  |  | 6 | DCLink Voltage |  |
|  |  |  | 7 | DI State |  |
|  |  |  | 8 | DO State |  |
|  |  |  | 9 | V1 Monitor[V] |  |
| CNF |  |  | 10 | V1 Monitor[\%] |  |
| CN |  |  | 13 | V2 Monitor[V] |  |
|  | 23 | Monitor Line-3 | 14 | V2 Monitor[\%] | 3:Output Voltage |
|  |  |  | 15 | 12 Monitor[mA] |  |
|  |  |  | 16 | I2 Monitor[\%] |  |
|  |  |  | 17 | PID Output |  |
|  |  |  | 18 | PID ref Value |  |
|  |  |  | 19 | PID Fbk Value |  |
|  |  |  | 20 | Torque |  |
|  |  |  | 21 | Torque Limit |  |
|  |  |  | 22 | Trq Bias Ref |  |
|  |  |  | 23 | Speed Limit |  |

## ENERTRONICA

SANTERNO

## How to use the status bar

On the top-right corner of the display, there is a display item. This item is displayed as long as the inverter is on, regardless of the mode the inverter is operating in.


- Monitor mode
- In the top-right corner of the display, the frequency reference is displayed (factory default).

- Enter Config mode and go to CNF-20 to select the item to display.
- Press the [PROG/ENT] key to change the item to 'Output Current.'
- On the top-right corner of the display, the unit changes from 'Frequency' to 'Current.'

- In monitor mode, the status bar item is changes to 'Current.'


### 3.7 Fault Monitoring

### 3.7.1 Monitoring Faults during Inverter Operation

The following example shows how to monitor faults that occurred during inverter operation.

| TRP current <br> Over Voltage (01) <br> 01 Output Freg <br> 48.30 Hz <br> 02 Output Current <br> 33.3A | - If a fault trip occurs during inverter operation, the inverter enters Trip mode automatically and displays the type of fault trip that occurred. |
| :---: | :---: |
| TRP Last-1 <br> 01 Output Freq <br> 02 Output Cur 48.30 Hz <br> urrent <br> 33.3A <br> 03 Inverter State <br> Stop | - Press the [ $\mathbf{\nabla}$ ] key to view the information on the inverter at the time of fault, including the output frequency, output current, and operation type. |
|  | - When the inverter is reset and the fault trip is released, the keypad display returns to the screen it was at when the fault trip occurred. |

### 3.7.2 Monitoring Multiple Fault Trips

The following example shows how to monitor multiple faults that occur at the same time.

| TRP current <br> Over Voltage (02) <br> 01 Output Freg 48.30 Hz <br> 02 Output Current $\begin{array}{r}33.3 \mathrm{~A}\end{array}$ | - If multiple fault trips occur at the same time, the number of fault trips occurred is displayed on the right side of the fault trip type. <br> - Press the [PROG/ENT] key. |
| :---: | :---: |
| TRP current <br> 00 Trip Name (02) <br> ${ }_{1} \quad$ Over Voltage External Trip | - The types of fault trips that occurred are displayed. <br> - Press the [PROG/ENT] key. |
| TRP current <br> Over Voltage (02) <br> OH oupput freg <br> 48.30 Hz <br> 02 Output Current <br> 33.3A | - The display returns to the screen it was at when the fault trip occurred. |

## Learning to Perform Basic Operations

## Fault trip history saving and monitoring

When fault trips occur, the trip mode saves the content. Up to five fault trips are saved in the history. Trip mode saves when the inverter is reset, and when a Low Voltage fault trip occurs due to power outages. If a trip occurs more than five times, the information for the five previous trips are automatically deleted.


- If a fault trip occurs during inverter operation, the inverter enters Trip mode automatically and displays the type of fault trip that occurred.
- After the [RESET] key or terminal is pressed, the fault trip is saved automatically and returns to the screen it was on before the fault trip occurred.
- Press the [MODE] key toenterTrip mode.
- The most recent fault trip is saved in Last-1 code.
- Press the [ ] key.
- The fault trip changes position and is saved in Last-2 code.
- When a fault trip occurs again, the content in Last-2 is moved to Last-3.


### 3.8 Parameter Initialization

The following example demonstrates how to revert all the parameter settings back to the factory default (Parameter Initialization). Parameter initialization may be performed for separate groups in Parameter mode as well.

|  | - Monitor mode is displayed. |
| :---: | :---: |
| CNF N STP 0.0 A <br> OU Jumpip Code 9 CODE  <br> 01 Language Sel English  <br> 02 Inv $\sin$ ver version 1.00 | - Press the [MODE] key to move to the Config (CNF) mode. |
|  | - Press the [ $\boldsymbol{\nabla}$ ] key to go to CNF-40 (Parameter Init). <br> - Press the [PROG/ENT] key. |
|  | - In the list of options, select All Groups, and then press the [PROG/ENT] key. |
|  | - The parameter initialization option is displayed again when the initialization is complete. |

## Learning Basic Features

## 4 Learning Basic Features

This chapter describes the basic features of the Sinus H inverter. Check the reference page in the table to see the detailed description for each of the advanced features.

| Basic Tasks | Description | Ref. |
| :--- | :--- | :--- |
| Frequency reference <br> source configuration for <br> the keypad | Configures the inverter to allow you to setup or modify <br> frequency reference using the Keypad. | p.117 |
| Frequency reference <br> source configuration for <br> the terminal block (input <br> voltage) | Configures the inverter to allow input voltages at the <br> terminal block (V1,V2) and to setup or modify a frequency <br> reference. | p.118, |
| Frequency reference <br> source configuration for <br> the terminal block (input <br> current) | Configures the inverter to allow input currents at the <br> terminal block (I2) and to setup or modify a frequency <br> reference. | p.124 |
| Frequency reference <br> source configuration for <br> the terminal block (input <br> pulse) | Configures the inverter to allow input pulse at the terminal <br> block (TI) and to setup or modify a frequency reference. | p.127 |
| Frequency reference <br> source configuration for <br> RS-485 communication | Configures the inverter to allow communication signals <br> from upper level controllers, such as PLCs or PCs, and to <br> setup or modify a frequency reference. | p.129 |
| Frequency control using <br> analog inputs | Enables the user to hold a frequency using analog inputs <br> at terminals. | p.130 |
| Motor operation display <br> options | Configures the display of motor operation values. Motor <br> operation is displayed either in frequency (Hz) or speed <br> (rpm). | p.131 |
| Multi-step speed <br> (frequency) configuration | Configures multi-step frequency operations by receiving <br> an input at the terminals defined for each step frequency. | p.131 |
| Command source <br> configuration for keypad <br> buttons | Configures the inverter to allow the manual operation of <br> the [FWD], [REV] and [Stop] keys. | p.133 |
| Command source <br> configuration for terminal <br> block inputs | Configures the inverter to accept inputs at the FX/RX <br> terminals. | p.134 |
| Command source <br> configuration for RS-485 <br> communication | Configures the inverter to accept communication signals <br> from upper level controllers, such as PLCs or PCs. | p.136 |


| Basic Tasks | Description | Ref. |
| :---: | :---: | :---: |
| Local/remote switching via the [ESC] key | Configures the inverter to switch between local and remote operation modes when the [ESC] key is pressed. When the inverter is operated using remote inputs (any input other than one from the keypad), this configuration can be used to perform maintenance on the inverter, without losing or altering saved parameter settings. It can also be used to override remotes and use the keypad immediately in emergencies. | p. 136 |
| Motor rotation control | Configures the inverter to limit a motor's rotation direction. | p. 138 |
| Automatic start-up at power-on | Configures the inverter to start operating at power-on. With this configuration, the inverter begins to run and the motor accelerates as soon as power is supplied to the inverter. To use automatic start-up configuration, the operation command terminals at the terminal block must be turned on. | p. 139 |
| Automatic restart after reset of a fault trip condition | Configures the inverter to start operating when the inverter is reset following a fault trip. In this configuration, the inverter starts to run and the motor accelerates as soon as the inverter is reset following a fault trip condition. For automatic start-up configuration to work, the operation command terminals at the terminal block must be turned on. | p. 139 |
| Acc/Dec time configuration based on the Max. Frequency | Configures the acceleration and deceleration times for a motor based on a defined maximum frequency. | p. 141 |
| Acc/Dec time configuration based on the frequency reference | Configures acceleration and deceleration times for a motor based on a defined frequency reference. | p. 143 |
| Multi-stage Acc/Dec time configuration using the multi-function terminal | Configures multi-stage acceleration and deceleration times for a motor based on defined parameters for the multi-function terminals. | p. 144 |
| Acc/Dec time transition speed (frequency) configuration | Enables modification of acceleration and deceleration gradients without configuring the multi-functional terminals. | p. 146 |
| Acc/Dec pattern configuration | Enables modification of the acceleration and deceleration gradient patterns. Basic patterns to choose from include linear and S -curve patterns. | p. 147 |
| Acc/Dec stop command | Stops the current acceleration or deceleration and controls motor operation at a constant speed. Multi-function terminals must be configured for this command . | p. 149 |
| Linear V/F pattern operation | Configures the inverter to run a motor at a constant torque. To maintain the required torque, the operating frequency may vary during operation. | p. 150 |

## Learning Basic Features

| Basic Tasks | Description | Ref. |
| :---: | :---: | :---: |
| Square reduction V/F pattern operation | Configures the inverter to run the motor at a square reduction V/F pattern. Fans and pumps are appropriate loads for square reduction V/F operation. | p. 151 |
| User V/F pattern configuration | Enables the user to configure aV/F pattern to match the characteristics of a motor. This configuration is for specialpurpose motor applications to achieve optimal performance. | p. 152 |
| Manual torque boost | Manual configuration of the inverter to produce a momentary torque boost. This configuration is for loads that require a large amount of starting torque, such as elevators or lifts. | p. 153 |
| Automatic torque boost | Automatic configuration of the inverter that provides "auto tuning" that produces a momentary torque boost. This configuration is for loads that require a large amount of starting torque, such as elevators or lifts. | p. 154 |
| Output voltage adjustment | Adjusts the output voltage to the motor when the power supply to the inverter differs from the motor's rated input voltage. | p. 155 |
| Accelerating start | Accelerating start is the general way to start motor operation. The typical application configures the motor to accelerate to a target frequency in response to a run command, however there may be other start or acceleration conditions defined. | p. 156 |
| Start after DC braking | Configures the inverter to perform DC braking before the motor starts rotating again. This configuration is used when the motor will be rotating before the voltage is supplied from the inverter. | p. 156 |
| Deceleration stop | Deceleration stop is the typical method used to stop a motor. The motor decelerates to OHz and stops on a stop command, however there may be other stop or deceleration conditions defined. | p. 157 |
| Stopping by DC braking | Configures the inverter to ap ply DC braking during motor deceleration. The frequency at which DC braking occurs must be defined and during deceleration, when the motor reaches the defined frequency, DC braking is applied. | p. 157 |
| Free-run stop | Configures the inverter to stop output to the motor using a stop command. The motor will free-run until it slows down and stops. | p. 159 |
| Power braking | Configures the inverter to provide optimal, motor deceleration, without tripping over-voltage protection. | p. 159 |
| Start/maximum frequency configuration | Configures the frequency reference limits by defining a start frequency and a maximum frequency. | p. 160 |
| Upper/lower frequency limit configuration | Configures the frequency reference limits by defining an upper limit and a lower limit. | p. 161 |

## SANTIERNO

| Basic Tasks | Description | Ref. |
| :--- | :--- | :--- |
| Frequency jump | Configures the inverter to avoid running a motor in <br> mechanically resonating frequencies. | $\mathrm{p.162}$ |
| $2^{\text {nd }}$ Operation <br> Configuration | Used to configure the 2 <br> nd <br> betweeration mode and switch <br> requirements. | $\mathrm{p.163}$ |
| Multi-function input <br> terminal control <br> configuration | Enables the user to improve the responsiveness of the <br> multi-function input terminals. | $\mathrm{p.164}$ |
| P2P communication <br> configuration | Configures the inverter to share input and output devices <br> with other inverters. | $\mathrm{p.166}$ |
| Multi-keypad <br> configuration | Enables the user to monitor multiple inverters with one <br> monitoring device. | $\mathrm{p.167}$ |
| User sequence <br> configuration | Enables the user to implement simple sequences using <br> various function blocks. | $\mathrm{p.168}$ |

### 4.1 Setting Frequency Reference

The Sinus H inverter provides several methods to setup and modify a frequency reference for an operation. The keypad, analog inputs [for example voltage (V1,V2) and current (I2) signals], or RS-485 (digital signals from higher-level controllers, such as PC or PLC) can be used.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | Frq | Frequency reference source | Ref Freq Src | 0 | KeyPad-1 | 0-12 |  |
|  |  |  |  | 1 | KeyPad-2 |  |  |
|  |  |  |  | 2 | V1 |  |  |
|  |  |  |  | 4 | V2 |  | - |
|  |  |  |  | 5 | 12 |  | - |
|  |  |  |  | 6 | Int 485 |  |  |
|  |  |  |  | 8 | Field Bus |  |  |
|  |  |  |  | 12 | Pulse |  |  |

## Learning Basic Features

### 4.1.1 Keypad as the Source (KeyPad-1 setting)

You can modify frequency reference by using the keypad and apply changes by pressing the [ENT] key. To use the keypad as a frequency reference input source, go to the Frq (Frequency reference source) code in the Operation group and change the parameter value to 0 (Keypad-1). Input the frequency reference for an operation at the 0.00 (Command Frequency) code in the Operation group.)

| Group | Code | Name | LCD <br> Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | Frq | Frequency <br> reference source | Freq Ref Src | 0 | KeyPad-1 | $0-12$ |

* You cannot set a frequency reference that exceeds the Max. Frequency, as configured with dr. 20 .


### 4.1.2 Keypad as the Source (KeyPad-2 setting)

You can use the [ $\mathbf{\Delta}$ ] and [ $\mathbf{\nabla}$ ] keys to modify a frequency reference. To use this as a second option, set the keypad as the source of the frequency reference, by going to the Frq (Frequency reference source) code in the Operation group and change the parameter value to 1 (Keypad-2). This allows frequency reference values to be increased or decreased by pressing the $[\mathbf{\Delta}]$ and $[\mathbf{\nabla}]$ keys.

| Group | Code | Name | LCD <br> Display | Parameter <br> Setting | Setting Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | Frq | Frequency <br> reference source | Freq Ref Src | 1 | KeyPad-2 | $0-12$ | - |
|  | 0.00 | Frequency <br> reference |  | 0.00 | Min to Max Frq* | Hz |  |

* You cannot set a frequency reference that exceeds the Max. Frequency, as configured with dr. 20 .


### 4.1.3 V1 Terminal as the Source

You can set and modify a frequency reference by setting voltage inputs when using the V1 terminal. Use voltage inputs ranging from 0 to 10 V (unipolar) for forward only operation. Use voltage inputs ranging from -10 to +10V (bipolar) for both directions, where negative voltage inputs are used reverse operations.

### 4.1.3.1 Setting a Frequency Reference for 0 -10V Input

Set code 06 (V1 Polarity) to 0 (unipolar) in the Input Terminal group (IN). Use a voltage output from an external source or use the voltage output from the VR terminal to provide inputs to V1. Refer to the diagrams below for the wiring required for each application.

[External source application] [Internal source (VR) application]

## Learning Basic Features

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | Frq | Frequency reference <br> source | Freq Ref Src | 2 | V1 | $0-12$ |$⿻-7$.

* Quantizing is disabled if '0' is selected.


## 0-10V Input Voltage Setting Details

| Code | Description |
| :---: | :---: |
|  | Configures the frequency reference at the maximum input voltage when a potentiometer is connected to the control terminal block. A frequency set with code In. 01 becomes the maximum frequency only if the value set in code $\ln .11$ (or $\ln .15$ ) is 100(\%). |
| In. 01 Freq at 100\% | - Set code $\ln .01$ to 40.00 and use default values for codes $\ln .02-\ln .16$. Motor will run at 40.00 Hz when a 10 V input is provided at V 1 . <br> - Set code In. 11 to 50.00 and use default values for codes $\ln .01-\ln .16$. Motor will run at 30.00 Hz ( $50 \%$ of the default maximum frequency60 Hz ) when a 10 V input is provided at V1. |
| In. 05 V1 Monitor[V] | Configures the inverter to monitor the input voltage at V1. |

## ENERTRONICA

SANTERNO

| Code | Description |
| :---: | :---: |
| In. 07 V1 Filter | V1 Filter may be used when there are large variations between reference frequencies. Variations can be mitigated by increasing the time constant, but this will require an increased response time. <br> The value $t$ (time) indicates the time required for the frequency to reach $63 \%$ of the reference, when external input voltages are provided in multiple steps. <br> [V1 Filter] |
| In. 08 V1 Volt x1In. 11 V1 Perc y2 | These parameters are used to configure the gradient level and offset values of the Output Frequency, based on the Input Voltage. <br> Frequency reference <br> [Volt x1-In. 11 V1 Perc y2] |
| In.16 V1 Inverting | Inverts the direction of rotation. Set this code to 1 (Yes) if you need the motor to run in the opposite direction from the current rotation. |

## Learning Basic Features



## SANTTERNO

### 4.1.3.2 Setting a Frequency Reference for -10-10V Input

Set the Frq (Frequency reference source) code in the Operation group to 2 (V1), and then set code 06 (V1 Polarity) to 1 (bipolar) in the Input Terminal group (IN). Use the output voltage from an external source to provide input to V1.

[V1 terminal wiring]

[Bipolar input voltage and output frequency]

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | Frq | Frequency reference source | Freq Ref Src | 2 | V1 | 0-12 | - |
| In | 01 | Frequency at maximum analog input | $\begin{array}{\|l\|l\|l} \text { Freq at } \\ 100 \% \end{array}$ | 60.00 |  | 0-Max Frequency | Hz |
|  | 05 | V1 input monitor | V1 Monitor | 0.00 |  | 0.00-12.00V | V |
|  | 06 | V1 polarity options | V1 Polarity | 1 | Bipolar | 0-1 |  |
|  | 12 | V1 minimum input voltage | V1- volt x1 | 0.00 |  | 10.00-0.00V | V |
|  | 13 | V1 output at minimum voltage (\%) | V1- Perc y1 | 0.00 |  | $\begin{array}{\|l} -100.00- \\ 0.00 \% \end{array}$ | \% |

## Learning Basic Features

|  | 14 | V1maximum input <br> voltage | V1- Volt x2 | -10.00 | $-12.00-0.00 \mathrm{~V}$ | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 15 | V1 output at <br> maximum voltage <br> $(\%)$ | V1- Perc y2 | -100.00 | $-100.00-$ <br> $0.00 \%$ | $\%$ |

Rotational Directions for Different Voltage Inputs

| Command / |
| :---: | :--- | :--- | :--- |
| Voltage Input | Input voltage | 0-10V |
| :--- |
| FWD |
| REV |

## -10-10V Voltage Input Setting Details

| Code | Description |
| :---: | :---: |
|  | Sets the gradient level and off-set value of the output frequency in relation to the input voltage. These codes are displayed only when In. 06 is set to 1 (bipolar). <br> As an example, if the minimum input voltage (at V1) is set to -2 (V) with $10 \%$ output ratio, and the maximum voltage is set to $-8(\mathrm{~V})$ with $80 \%$ output ratio respectively, the output frequency will vary within the range of $6-48 \mathrm{~Hz}$. <br> In. 14 <br> In. 12 |
| $\begin{aligned} & \text { In. } 12 \text { V1- volt x1- } \\ & \text { In. } 15 \text { V1- Perc y2 } \end{aligned}$ | Frequency reference <br> [In. 12 V1-volt X1-In. 15 V1 Perc y] <br> For details about the $0-+10 \mathrm{~V}$ analog inputs, refer to the code descriptions In. 08 V1 volt x1-In. 11 V1 Perc y2 on page 120. |

## ENERTRONICA

SANTERNO

### 4.1.3.3 Setting a Reference Frequency using Input Current (I2)

You can set and modify a frequency reference using input current at the 12 terminal after selecting current input at SW 2 . Set the Frq (Frequency reference source) code in the Operation group to 5 ( 12 ) and apply $4-20 \mathrm{~mA}$ input current to I .

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | Frq | Frequency reference <br> source | Freq Ref Src | 5 | 12 | $0-12$ |$⿻-$


| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In | 53 | 12 minimum input <br> current | 12 Currx1 | 4.00 | $0.00-20.00$ | mA |
|  | 12 output at minimum <br> current (\%) | 12 Perc y1 | 0.00 | $0-100$ | $\%$ |  |
|  | 12 maximum input <br> current | 12 Currx2 | 20.00 | $0.00-24.00$ | mA |  |
|  | 12 output at <br> maximum current (\%) | 12 Perc y2 | 100.00 | $0.00-100.00$ | $\%$ |  |
|  | I2 rotation direction <br> options | 12 Inverting | 0 | No | $0-1$ | - |
|  | 12 Quantizing level | 12 Quantizing | 0.04 | $0 * 0.04-$ <br> 10.00 | $\%$ |  |

[^0]
## Learning Basic Features

## Input Current (I2) Setting Details

| Code | Description |
| :---: | :---: |
| In. 01 Freq at 100\% | Configures the frequency reference for operation at the maximum current (when In. 56 is set to $100 \%$ ). <br> - If $\ln .01$ is set to 40.00 Hz , and default settings are used for $\ln .53-56$, 20 mA input current (max) to I 2 will produce a frequency reference of 40.00 Hz . <br> - If $\ln .56$ is set to 50.00 (\%), and default settings are used for $\ln .01(60 \mathrm{~Hz})$ and In.53-55, 20mA input current (max) to I 2 will produce a frequency reference of $30.00 \mathrm{~Hz}(50 \%$ of 60 Hz ). |
| In. 5012 Monitor | Used to monitor input current at I2. |
| In. 5212 Filter | Configures the time for the operation frequency to reach $63 \%$ of target frequency based on the input current at I 2 . |
| $\begin{aligned} & \text { In. } 53 \text { I2 Curr x1- } \\ & \text { In. } 56 \text { I2 Perc y2 } \end{aligned}$ | Configures the gradient level and off-set value of the output frequency. <br> Frequency Reference <br> [Gradient and off-set configuration based on output frequency] |

### 4.1.4 Setting a Frequency Reference with Input Voltage (Terminal 12)

Set and modify a frequency reference using input voltage at I2 (V2) terminal by setting SW2 to V2. Set the Frq (Frequency reference source) code in the Operation group to 4 (V2) and apply $0-12 \mathrm{~V}$ input voltage to $\mathrm{I} 2(=\mathrm{V} 2$, Analog current/voltage input terminal). Codes In . $35-$ 47 will not be displayed when I2 is set to receive current input (Frq code parameter is set to 5).

## SANTERNO

| Group | Cod <br> e | Name | LCD Display | Parameter <br> Setting |  | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operatio <br> n | Frq | Frequency <br> reference source | Freq Ref Src | 4 | V2 | $0-12$ | - |
|  | 35 | V2 input display | V2 Monitor | 0.00 | $0.00-12.00$ | V |  |
|  | 37 | V2 input filter time <br> Constant | V2 Filter | 100 | $0-10000$ | ms |  |
|  | 38 | Minimum V2 input <br> Voltage | V2 Volt x1 | 0.00 | $0.00-10.00$ | V |  |
|  | 39 | Output\% at <br> Ininimum V2 <br> voltage | V2 Perc y1 | 0.00 | $0.00-100.00$ | $\%$ |  |
|  | 40 | Maximum V2 <br> input voltage | V2 Volt x2 | 10.00 | $0.00-10.00$ | V |  |
|  | 41 | Output\% at <br> maximum V2 <br> voltage | V2 Perc y2 | 100.00 | $0.00-100.00$ | $\%$ |  |
|  | 46 | Invert V2 <br> rotational <br> direction | V2 Inverting | 0 | No | $0-1$ | - |
|  | 47 | V2 quantizing <br> level | V2 Quantizing | 0.04 | $0.00 *, 0.04-$ <br> 10.00 | $\%$ |  |

* Quantizing is disabled if '0' is selected.


## Learning Basic Features

### 4.1.5 Setting a Frequency with TI Pulse Input

Set a frequency reference by setting the Frq (Frequency reference source) code in Operation group to 12 (Pulse). In case of IP66 models, set the In. 69 P5 Define to 54(T) and provide $0-32.00 \mathrm{kHz}$ pulse frequency to P 5 .

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | Frq | Frequency reference source | Freq Ref Src | 12 | Pulse | 0-12 | - |
| In | 69 | P5 terminal function setting | P5 Define | 54 | TI | 0-54 | - |
|  | 01 | Frequency at maximum analog input | Freq at 100\% | 60.00 |  | 0.00Maximum frequency | Hz |
|  | 91 | Pulse input display | Pulse Monitor | 0.00 |  | 0.00-50.00 | kHz |
|  | 92 | Tl input filter time constant | TI Filter | 10 |  | 0-9999 | ms |
|  | 93 | Tl input minimum pulse | Tl Pls x1 | 0.00 |  | 0.00-32.00 | kHz |
|  | 94 | Output\% at TI minimum pulse | TI Perc yl | 0.00 |  | 0.00-100.00 | \% |
|  | 95 | TI Input maximum pulse | TI Pls x2 | 32.00 |  | 0.00-32.00 | kHz |
|  | 96 | Output\% at TI maximum pulse | TI Perc y2 | 100.00 |  | 0.00-100.00 | \% |
|  | 97 | Invert TI direction of rotation | TI Inverting | 0 | No | 0-1 | - |
|  | 98 | Tl quantizing level | TI Quantizing | 0.04 |  | $\begin{aligned} & 0.00^{*}, 0.04- \\ & 10.00 \end{aligned}$ | \% |

[^1]
## TI Pulse Input Setting Details

| Code | Description |
| :---: | :---: |
| In.69 P5 Define | In case of IP66 models, Pulse input TI and Multi-function terminal P5 share the same terminal. <br> Set the In. 69 P5 Define to 54(T). |
| In. 01 Freq at 100\% | Configures the frequency reference at the maximum pulse input. The frequency reference is based on $100 \%$ of the value set with In. 96 . <br> - If In. 01 is set to 40.00 and codes $\ln .93-96$ are set at default, 32 kHz input to TI yields a frequency reference of 40.00 Hz . <br> - If In. 96 is set to 50.00 and codes $\ln .01, \ln .93-95$ are set at default, 32 kHz input to the TI terminal yields a frequency reference of 30.00 Hz . |
| In. 91 Pulse Monitor | Displays the pulse frequency supplied at TI . |
| In. 92 TI Filter | Sets the time for the pulse input at TI to reach 63\% of its nominal frequency (when the pulse frequency is supplied in multiple steps). |
| In. 93 TI Pls x1- In. 96 TI Perc y2 | Configures the gradient level and offset values for the output frequency. |
| In. 97 TI InvertingIn. 98 TI <br> Quantizing | Identical to In.16-17 (refer to In. 16 V1 Inverting/In.17.V1 Quantizing on page 120). |

## Learning Basic Features

### 4.1.6 Setting a Frequency Reference via RS-485 Communication

Control the inverter with upper-level controllers, such as PCs or PLCs, via RS-485 communication. Set the Frq (Frequency reference source) code in the Operation group to 6 (Int 485) and use the RS-485 signal input terminals (S+/S-/SG) for communication. Refer to 7. RS-485 Communication Features on page 298.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | Frq | Frequency reference source | Freq Ref Src | 6 | Int 485 | 0-12 | - |
| CM | 01 | Integrated RS-485 communication inverter ID | Int485 St ID | - | 1 | 1-250 | - |
|  | 03 | Integrated communication speed | Int485 BaudR | 3 | 9600 bps | 0-7 | - |
|  | 04 | Integrated communication frame configuration | Int485 Mode | 0 | D8/PN/S1 | 0-3 | - |
|  |  |  |  | 1 | D8/PN/S2 |  |  |
|  |  |  |  | 2 | D8/PE/S1 |  |  |
|  |  |  |  | 3 | D8/PO/S1 |  |  |

### 4.2 Frequency Hold by Analog Input

If you set a frequency reference via analog input at the control terminal block, you can hold the operation frequency of the inverter by assigning a multi-function input as the analog frequency hold terminal. The operation frequency will be fixed upon an analog input signal.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | Frq | Frequency reference source | Freq Ref Src | 0 | Keypad-1 | 0-12 |  |
|  |  |  |  | 1 | Keypad-2 |  |  |
|  |  |  |  | 2 | V1 |  |  |
|  |  |  |  | 4 | V2 |  |  |
|  |  |  |  | 5 | 12 |  |  |
|  |  |  |  | 6 | Int 485 |  |  |
|  |  |  |  | 8 | Field Bus |  |  |
|  |  |  |  | 12 | Pulse |  |  |
| In | $\begin{array}{\|l\|} \hline 65-71 \\ \text { in IP20 } \\ \text { models, } \\ 65-69 \\ \text { in IP66 } \\ \text { models } \\ \hline \end{array}$ | Px terminal configuration | Px Define(Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | 21 | Analog Hold | 0-54 | - |

$\qquad$
Operating frequency
$\xrightarrow{\text { Px }}$

## Learning Basic Features

### 4.3 Changing the Displayed Units ( $\mathrm{Hz} \leftrightarrow \mathrm{Rpm}$ )

You can change the units used to display the operational speed of the inverter by setting Dr. 21 (Speed unit selection) to $0(\mathrm{~Hz})$ or 1 (Rpm). This function is available only with the LCD keypad.

| Group | Code | Name | LCD Display |  | ter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dr | 21 | Speed unit selection | Hz/Rpm Sel | 0 | Hz Display | 0-1 |  |
|  |  |  |  | 1 | Rpm Display |  |  |

### 4.4 Setting Multi-step Frequency

Multi-step operations can be carried out by assigning different speeds (or frequencies) to the Px terminals. Step 0 uses the frequency reference source set with the Frq code in the Operation group. Px terminal parameter values 7 (Speed-L), 8 (Speed-M) and 9 (Speed-H) are recognized as binary commands and work in combination with Fx or Rx run commands. The inverter operates according to the frequencies set with St.1-3 (multi-step frequency 13) , bA.53-56 (multi-step frequency 4-7) and the binary command combinations.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | St1-St3 | Multi-step frequency 1-3 | Step Freq - 13 |  |  | 0-Maximum frequency | Hz |
| bA | 53-56 | Multi-step frequency 4-7 | $\begin{aligned} & \text { Step Freq - 4- } \\ & 7 \end{aligned}$ | - |  | 0-Maximum frequency | Hz |
| In | 65-71 in IP20 models, 65-69 in IP66 models | Px terminal configuration | Px Define(Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | 7 | Speed-L | 0-54 | - |
|  |  |  |  | 8 | Speed-M |  | - |
|  |  |  |  | 9 | Speed-H |  | - |
|  | 89 | Multi-step command delay time | InCheck Time | 1 |  | 1-5000 | ms |

## SANTIERNO

## Multi-step Frequency Setting Details

| Code | Description |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Operation group St 1-St3 <br> Step Freq-1-3 | Configure multi-step frequency1-3. <br> If an LCD keypad is in use, bA.50-52 is used instead of St1-St3 (multi-step frequency 1-3). |  |  |  |  |
| bA.53-56 <br> Step Freq - 4-7 | Configure multi-step frequency 4-7. |  |  |  |  |
| In.65-71 for P1-P7 in IP20 models, In.65-69 for P1-P5 in IP66 models Px Define | Choose the ter relevant cod models) to 7 <br> Provided tha and Speed-H available. <br> [An example | als to se <br> 65-71 for <br> -L), 8(S <br> inals P3 ctively, $\qquad$ $\qquad$ <br> ulti-ste | multi- <br> in IP2 <br> ), or 9 <br> P5 h owing | s, and <br> In. 65 <br> set to <br> op | the <br> P5 in <br> Speed <br> be |
|  | Speed | Fx/Rx | P5 | P4 | P3 |
|  | 0 | $\checkmark$ | - | - | - |
|  | 1 | $\checkmark$ | - | - | $\checkmark$ |
|  | 2 | $\checkmark$ | - | $\checkmark$ | - |
|  | 3 | $\checkmark$ | - | $\checkmark$ | $\checkmark$ |
|  | 4 | $\checkmark$ | $\checkmark$ | - | - |
|  | 5 | $\checkmark$ | $\checkmark$ | - | $\checkmark$ |
|  | 6 | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |
|  | 7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## Learning Basic Features

| Code | Description |
| :--- | :--- |
| In.89 InCheck | Set a time interval for the inverter to check for additional terminal block <br> inputs after receiving an input signal. |
| Time | After adjusting In.89 to 100 ms and an input signal is received at P5, the <br> inverter will search for inputs at other terminals for 100ms, before <br> proceeding to accelerate or decelerate based on P5's configuration. |

### 4.5 Command Source Configuration

Various devices can be selected as command input devices for the Sinus H inverter. Input devices available to select include keypad, multi-function input terminal, RS-485 communication and field bus adapter.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | drv | Command Source | Cmd Source* | 0 | Keypad | 0-4 |  |
|  |  |  |  | 1 | Fx/Rx-1 |  |  |
|  |  |  |  | 2 | Fx/Rx-2 |  | - |
|  |  |  |  | 3 | Int 485 |  |  |
|  |  |  |  | 4 | Field Bus |  |  |

* Displayed under DRV-06 on the LCD keypad.


### 4.5.1 The Keypad as a Command Input Device

The keypad can be selected as a command input device to send command signals to the inverter. This is configured by setting the drv (command source) code to 0 (Keypad). Press the [RUN] key on the keypad to start an operation, and the [STOP/RESET] key to end it.

| group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | drv | Command source | Cmd Source* | 0 | KeyPad | $0-4$ |

[^2]
### 4.5.2 Terminal Block as a Command Input Device (Fwd/Rev Run Commands)

Multi-function terminals can be selected as a command input device. This is configured by setting the drv (command source) code in the Operation group to $1(\mathrm{Fx} / \mathrm{Rx})$. Select 2 terminals for the forward and reverse operations, and then set the relevant codes (2 of the 5 multi-function terminal codes, In.65-71 for P1-P7 in IP20 models, In.65-69 for P1-P5 in IP66 models) to $1(\mathrm{Fx})$ and $2(\mathrm{Rx})$ respectively. This application enables both terminals to be turned on or off at the same time, constituting a stop command that will cause the inverter to stop operation.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | drv | Command <br> source | Cmd Source* | 1 | Fx/Rx-1 | $0-4$ |
| In | 65-71 <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal <br> configuration | Px Define(Px: <br> P1-P I In IP20 <br> models, <br> P1-P5 in IP66 <br> models) | 1 | Fx | Rx |

* Displayed under DRV-06 on the LCD keypad.


## Fwd/Rev Command by Multi-function Terminal - Setting Details

| Code | Description |
| :--- | :--- |
| Operation group <br> drv- Cmd Source | Set to 1(Fx/Rx-1). |
| In.65-71 (P1-P7 in |  |
| IP20 models), | Assign a terminal for forward (Fx) operation. |
| In.65-69 (P1-P5 in <br> IP66 models) | Assign a terminal for reverse (Rx) operation. |
| Px Define |  |



## Learning Basic Features

### 4.5.3 Terminal Block as a Command Input Device (Run and Rotation Direction Commands)

Multi-function terminals can be selected as a command input device. This is configured by setting the drv (command source) code in the Operation group to 2(Fx/Rx-2). Select 2 terminals for run and rotation direction commands, and then select the relevant codes ( 2 of the 5 multi-function terminal codes, In.65-71 for P1-P7 in IP20 models, In.65-69 for P1-P5 in IP66 models) to 1(Fx) and 2(Rx) respectively. This application uses an Fx input as a run command, and an Rx input to change a motor's rotation direction (On-Rx, Off-Fx).

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | Drv | Command source | Cmd Source* | 2 | Fx/Rx-2 | $0-4$ | - |
| In | $65-71$ <br> in IP20 <br> models, <br> $65-69$ <br> in IP66 <br> models | Px terminal <br> configuration | Px Define(Px: <br> P1-P7 in IP20 <br> models, <br> P1-P5 in IP66 <br> models) | 2 | Fx | Rx |  |

* Displayed under DRV-06 on the LCD keypad.


## Run Command and Fwd/Rev Change Command Using Multi-function Terminal Setting Details

| Code | Description |
| :--- | :--- |
| Operation group <br> drv Cmd Source | Set to 2(Fx/Rx-2). |
| In.65-71 (P1-P7 in |  |
| IP20 models), | Assign a terminal for run command (Fx). |
| In.65-69 (P1-P5 in <br> IP66 models) <br> Px Define | Assign a terminal for changing rotation direction (Rx). |


| Frequency |
| :--- |
| RX |

### 4.5.4 RS-485 Communication as a Command Input Device

Internal RS-485 communication can be selected as a command input device by setting the drv (command source) code in the Operation group to 3(Int 485). This configuration uses upper level controllers such as PCs or PLCs to control the inverter by transmitting and receiving signals via the $\mathrm{S}+\mathrm{S}$-, and Sg terminals at the terminal block. For more details, refer to 7RS-485 Communication Features on page 298.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | drv | Command source | Cmd <br> Source* | 3 | Int 485 | $0-4$ | - |
| CM | 01 | Integrated <br> communication inverter <br> ID | Int485 St ID | 1 | $1-250$ | - |  |
|  | 02 | Integrated <br> communication <br> protocol | Int485 Proto | 0 | ModBus <br> RTU | 0 | - |
|  | 03 | Integrated <br> communication speed | Int485 <br> BaudR | 3 | 9600 bps | $0-7$ | - |
|  | 04 | Integrated <br> communication frame <br> setup | Int485 Mode | 0 | D8/ PN / <br> S1 | $0-3$ | - |

* Displayed under DRV-06 on the LCD keypad.


### 4.6 Local/Remote Mode Switching

Local/remote switching is useful for checking the operation of an inverter or to perform an inspection while retaining all parameter values. Also, in an emergency, it can also be used to override control and operate the system manually using the keypad.

The [ESC] key is a programmable key that can be configured to carry out multiple functions. For more details, refer to 3.2.4 Configuring the [ESC] Key on page 74.

| Group | Code | Name | LCD <br> Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr | 90 | [ESC] key functions | - | 2 | Local/Remote | $0-2$ | - |
| Operation | drv | Command source | Cmd <br> Source* | 1 | Fx/Rx-1 | $0-4$ | - |

[^3]
## Local/Remote Mode Switching Setting Details

| Code | Description |
| :--- | :--- |
|  | Set dr.90 to 2(Local/Remote) to perform local/remote switching using the <br> [ESC] key. Once the value is set, the inverter will automatically begin <br> operating in remote mode. Changing from local to remote will not alter any <br> previously configured parameter values and the operation of the inverter <br> will not change. <br> dr. 90 <br> [ESC] key <br> functions |
| light will flash, and the inverter will operate using the [RUN] key on the <br> keypad. Press the [ESC] key again to switch the operation mode back to <br> "remote."The SET light will turn off and the inverter will operate according <br> to the previous drv code configuration. |  |

## Note

## Local/Remote Operation

- Full control of the inverter is available with the keypad during local operation (local operation).
- During local operation, jog commands will only work if one of the multi-function terminals (codes In.65-71 for P1-P7 in IP20 models, In.65-69 for P1-P5 in IP66 models) is set to 13(RUN Enable) and the relevant terminal is turned on.
- During remote operation (remote operation), the inverter will operate according to the previously set frequency reference source and the command received from the input device.
- If Ad. 10 (power-on run) is set to $0(\mathrm{No}$ ), the inverter will NOT operate on power-on even when the following terminals are turned on:
- Fwd/Rev run (Fx/Rx) terminal
- Fwd/Rev jog terminal (Fwd jog/Rev Jog)
- Pre-Excitation terminal

To operate the inverter manually with the keypad, switch to local mode. Use caution when switching back to remote operation mode as the inverter will stop operating. If Ad. 10 (power-on run) is set to 0(No), a command through the input terminals will work ONLY AFTER all the terminals listed above have been turned off and then turned on again.

- If the inverter has been reset to clear a fault trip during an operation, the inverter will switch to local operation mode at power-on, and full control of the inverter will be with the keypad. The inverter will stop operating when operation mode is switched from "local" to "remote". In this case, a run command through an input terminal will work ONLY AFTER all the input terminals have been turned off.

Switching operation mode from "remote" to "local" while the inverter is running will cause the inverter to stop operating. Switching operation mode from "local" to "remote" however, will cause the inverter to operate based on the command source:

- Analog commands via terminal input: the inverter will continue to run without interruption based on the command at the terminal block. If a reverse operation ( Rx ) signal is ON at the terminal block at startup, the inverter will operate in the reverse direction even if it was running in the forward direction in local operation mode before the reset.
- Digital source commands: all command sources except terminal block command sources (which are analog sources) are digital command sources that include the keypad, LCD keypad, and communication sources. The inverter stops operation when switching to remote operation mode, and then starts operation when the next command is given.


## (1) Caution

Use local/remote operation mode switching only when it is necessary. Improper mode switching may result in interruption of the inverter's operation.

### 4.7 Forward or Reverse Run Prevention

The rotation direction of motors can be configured to prevent motors to only run in one direction. Pressing the $[R E V]$ key on the LCD keypad when direction prevention is configured, will cause the motor to decelerate to OHz and stop. The inverter will remain on.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad | 09 | Run prevention options | Run Prevent | 0 | None | 0-2 |  |
|  |  |  |  | 1 | Forward Prev |  | - |
|  |  |  |  | 2 | Reverse Prev |  |  |

## Forward/Reverse Run Prevention Setting Details

| Code |  |  |  |
| :---: | :---: | :---: | :---: |
| Ad. 09 Run Prevent | Choose a direction to prevent. |  |  |
|  | Setting |  | Description |
|  | 0 | None | Do not set run prevention. |
|  | 1 | Forward Prev | Set forward run prevention. |
|  | 2 | Reverse Prev | Set reverse run prevention. |

## Learning Basic Features

### 4.8 Power-on Run

A power-on command can be setup to start an inverter operation after powering up, based on terminal block operation commands (if they have been configured). To enable power-on run set the drv (command source) code to $1(F x / R x-1)$ or 2 ( $F x / R x-2$ ) in the Operation group.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | drv | Command source | Cmd Source* | 1, <br> 2 | Fx/Rx-1 or <br> Fx/Rx-2 | $0-4$ | - |
| Ad | 10 | Power-on run | Power-on <br> Run | 1 | Yes | $0-1$ | - |

* Displayed under DRV-06 on the LCD keypad.


Ad. 10=0


Ad. 10=1

## Note

- A fault trip may be triggered if the inverter starts operation while a motor's load (fan-type load) is in free-run state. To prevent this from happening, set bit4 to 1 in Cn .71 (speed search options) of the Control group. The inverter will perform a speed search at the beginning of the operation.
- If the speed search is not enabled, the inverter will begin its operation in a normal V/F pattern and accelerate the motor. If the inverter has been turned on without power-on run enabled, the terminal block command must first be turned off, and then turned on again to begin the inverter's operation.


## Caution

Use caution when operating the inverter with Power-on Run enabled as the motor will begin rotating when the inverter starts up.

## ENERTRONICA <br> SANTERNO

### 4.9 Reset and Restart

Reset and restart operations can be setup for inverter operation following a fault trip, based on the terminal block operation command (if it is configured). When a fault trip occurs, the inverter cuts off the output and the motor will free-run. Another fault trip may be triggered if the inverter begins its operation while motor load is in a free-run state.

| Group | Code | Name | $\begin{aligned} & \hline \text { LCD } \\ & \text { Display } \end{aligned}$ | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | drv | Command source | Cmd Source* | $\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$ | Fx/Rx-1 or <br> Fx/Rx-2 | 0-4 |  |
| Pr | 08 | Reset restart setup | RST Restart | 1 | Yes | 0-1 |  |
|  | 09 | No. of auto restart | Retry Number | 0 |  | 0-10 |  |
|  | 10 | Auto restart delay time | Retry Delay | 1.0 |  | 0-60 | sec |

* Displayed under DRV-06 in an LCD keypad.


Pr. $08=0$


Pr.08=1

## Note

- To prevent a repeat fault trip from occurring, set Cn. 71 (speed search options) bit 2 equal to 1. The inverter will perform a speed search at the beginning of the operation.
- If the speed search is not enabled, the inverter will start its operation in a normal V/F pattern and accelerate the motor. If the inverter has been turned on without'reset and restart'enabled, the terminal block command must be first turned off, and then turned on again to begin the inverter's operation.


## (1) Caution

Use caution when operating the inverter with Power-on Run enabled as the motor will begin rotating when the inverter starts up.

## Learning Basic Features

### 4.10 Setting Acceleration and Deceleration Times

### 4.10.1 Acc/Dec Time Based on Maximum Frequency

Acc/Dec time values can be set based on maximum frequency, not on inverter operation frequency. To set Acc/Dec time values based on maximum frequency, set bA. 08 (Acc/Dec reference) in the Basic group to 0 (Max Freq).

Acceleration time set at the ACC (Acceleration time) code in the Operation group (dr. 03 in an LCD keypad) refers to the time required for the inverter to reach the maximum frequency from a stopped ( OHz ) state. Likewise, the value set at the dEC (deceleration time) code in the Operation group (dr. 04 in an LCD keypad) refers to the time required to return to a stopped state $(0 \mathrm{~Hz})$ from the maximum frequency.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | ACC | Acceleration time | Acc Time | 20.0 | $0.0-600.0$ | sec |
|  | dEC | Deceleration <br> time | Dec Time | 30.0 | $0.0-600.0$ | sec |
|  | 20 | Maximum <br> frequency | Max Freq | 60.00 | $40.00-400.00$ | Hz |
|  | 08 | Acc/Dec <br> reference <br> frequency | Ramp TMode | 0 | Max Freq | $0-1$ |

## ENERTRONICA

SANTERNO

## Acc/Dec Time Based on Maximum Frequency - Setting Details

| Code | Description | Set the parameter value to 0 (Max Freq) to setup Acc/Dec time based on <br> maximum frequency. |
| :--- | :--- | :--- |
|  | Configuration Description  <br> 0 Max Freq Set the Acc/Dec time based on <br> maximum frequency. <br> 1 Delta Freq Set the Acc/Dec time based on <br> operating frequency. |  |


| bA. 08 |  |
| :--- | :--- |
| Ramp TMode | to 5 seconds, and the frequency reference for oper <br> of 60 Hz ), the time required to reach 30 Hz therefore <br> seconds). <br> Max. Freq. |
| Frequency |  |
| Run cmd |  |


|  | Use the time scale for all time-related values. It is particularly useful when a <br> more accurate Acc/Dec times are required because of load characteristics, <br> or when the maximum time range needs to be extended. |
| :--- | :--- | :--- |
| bA.09 Time scale Configuration Description <br>  0 0.01 sec <br>  0.1 sec Sets 0.01 second as the minimum unit. <br>  Sets 0.1 second as the minimum unit.  <br> 2 1 sec Sets 1 second as the minimum unit. |  |

## Caution

Note that the range of maximum time values may change automatically when the units are changed. If for example, the acceleration time is set at 6000 seconds, a time scale change from 1 second to 0.01 second will result in a modified acceleration time of 60.00 seconds.

## Learning Basic Features

### 4.10.2 Acc/Dec Time Based on Operation Frequency

Acc/Dec times can be set based on the time required to reach the next step frequency from the existing operation frequency. To set the Acc/Dec time values based on the existing operation frequency, set bA. 08 (acc/dec reference) in the Basic group to 1 (Delta Freq).

| Group | Cod <br> $e$ | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | ACC | Acceleration time | Acc Time | 20.0 | $0.0-600.0$ | sec |
|  | dEC | Deceleration time | Dec Time | 30.0 | $0.0-600.0$ | sec |
| bA | 08 | Acc/Dec <br> reference | Ramp TMode | 1 | Delta Freq | $0-1$ |

Acc/Dec Time Based on Operation Frequency - Setting Details


### 4.10.3 Multi-step Acc/Dec Time Configuration

Acc/Dec times can be configured via a multi-function terminal by setting the ACC (acceleration time) and dEC (deceleration time) codes in the Operation group.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operat <br> ion | ACC | Acceleration time | Acc Time | 20.0 | $0.0-600.0$ | sec |
|  | dEC | Deceleration time | Dec Time | 30.0 | $0.0-600.0$ | sec |
|  | $71-83$ | Multi-step <br> acceleration time1-7 | Acc Time 1-7 <br> deceleration time1-7 | Dec Time 1-7 | X.xx | $0.0-600.0$ | sec | In |
| :--- |

## Acc/Dec Time Setup via Multi-function Terminals - Setting Details

| Code | Description |
| :--- | :--- |
| bA. 70-82 Acc Time <br> $1-7$ | Set multi-step acceleration time1-7. |
| bA.71-83 Dec Time <br> $1-7$ | Set multi-step deceleration time1-7. |

## Learning Basic Features



### 4.10.4 Configuring Acc/Dec Time Switch Frequency

You can switch between two different sets of Acc/Dec times (Acc/Dec gradients) by configuring the switch frequency without configuring the multi-function terminals.

| Group | Cod <br> e | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | ACC | Acceleration time | Acc Time | 10.0 | $0.0-600.0$ | sec |
|  | dEC | Deceleration time | Dec Time | 10.0 | $0.0-600.0$ | sec |
| bA | 70 | Multi-step <br> acceleration time1 | Acc Time-1 | 20.0 | $0.0-600.0$ | sec |
|  | 71 | Multi-step <br> deceleration time1 | Dec Time-1 | 20.0 | $0.0-600.0$ | sec |
|  | 60 | Acc/Dec time <br> switch frequency | Xcel Change <br> Frq | 30.00 | $0-$ Maximum <br> frequency | Hz |

## Acc/Dec Time Switch Frequency Setting Details

| Code | Description |
| :--- | :--- |
| Ad.60 | After the Acc/Dec switch frequency has been set,Acc/Dec gradients <br> configured at bA. 70 and 71 will be used when the inverter's operation <br> frequency is at or below the switch frequency. If the operation frequency <br> Xcel Change Fr <br> exceeds the switch frequency, the configured gradient level, configured for <br> theACC and dEC codes, will be used. <br> If you configure the multi-function input terminals P1-P7 (IP20 models), P1- <br> P5 (IP66 models) for multi-step Acc/Dec gradients (XCEL-L, XCEL-M, XCEL-H), <br> the inverter will operate based on the Acc/Dec inputs at the terminals <br> instead of the Acc/Dec switch frequency configurations. |



## Learning Basic Features

### 4.11 Acc/Dec Pattern Configuration

Acc/Dec gradient level patterns can be configured to enhance and smooth the inverter's acceleration and deceleration curves. Linear pattern features a linear increase or decrease to the output frequency, at a fixed rate. For an S-curve pattern a smoother and more gradual increase or decrease of output frequency, ideal for lift-type loads or elevator doors, etc. S-curve gradient level can be adjusted using codes Ad. 03-06 in the Advanced group.

| $\begin{aligned} & \text { Grou } \\ & \text { p } \end{aligned}$ | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bA | 08 | Acc/Dec reference | Ramp T mode | 0 | Max Freq | 0-1 | - |
| Ad | 01 | Acceleration pattern | Acc Pattern | 0 | Linear | 0-1 | - |
|  | 02 | Deceleration pattern | Dec Pattern | 1 | S-curve |  | - |
|  | 03 | S-curve Acc start gradient | Acc S Start | 40 |  | 1-100 | \% |
|  | 04 | S-curve Acc end gradient | Acc S End | 40 |  | 1-100 | \% |
|  | 05 | S-curve Dec start gradient | Dec S Start | 40 |  | 1-100 | \% |
|  | 06 | S-curve Dec end gradient | Dec S End | 40 |  | 1-100 | \% |

## Acc/Dec Pattern Setting Details

| Code | Description |
| :--- | :--- |
| Ad.03 Acc S Start | Sets the gradient level as acceleration starts when using an S-curve, <br> Acc/Dec pattern. Ad. 03 defines S-curve gradient level as a percentage, up <br> to half of total acceleration. <br> If the frequency reference and maximum frequency are set at 60 Hz and <br> Ad.03 is set to 50\%, Ad. 03 configures acceleration up to 30Hz (half of <br> $60 \mathrm{~Hz})$. The inverter will operate S-curve acceleration in the 0-15Hz frequency <br> range (50\% of 30Hz). Linear acceleration will be ap plied to the remaining <br> acceleration within the 15-30Hz frequency range. |
|  | Sets the gradient level as acceleration ends when using an S-curve Acc/Dec <br> pattern. Ad. 03 defines S-curve gradient level as a percentage, above half of <br> total acceleration. <br> If the frequency reference and the maximum frequency are set at 60Hz and <br> Ad.04 is set to 50\%, setting Ad. 04 configures acceleration to increase from <br> 30 Hz (half of 60Hz) to 60Hz (end of acceleration). Linear acceleration will be <br> applied within the 30-45Hz frequency range. The inverter will perform an S- <br> curve acceleration for the remaining acceleration in the 45-60Hz frequency <br> range. |


| Ad. 05 Dec S Start | Sets the rate of S-curve deceleration. Configuration for codes Ad. 05 and <br> - <br> Ad. 06 may be performed the same way as configuring codes Ad. 03 and |
| :--- | :--- |


[Acceleration / deceleration pattern configuration]


[Acceleration / deceleration S-curve parrten configuration]

## Learning Basic Features

## Note

The Actual Acc/Dec time during an S-curve application
Actual acceleration time $=$ user-configured acceleration time + user-configured acceleration time $x$ starting gradient level/ $2+$ user-configured acceleration time $x$ ending gradient level/ 2 . Actual deceleration time $=$ user-configured deceleration time + user-configured deceleration time $x$ starting gradient level/ $2+$ user-configured deceleration time x ending gradient level/ 2 .

## (1) Caution

Note that actual Acc/Dec times become greater than user defined Acc/Dec times when S-curve Acc/Dec patterns are in use.

### 4.12 Stopping the Acc/Dec Operation

Configure the multi-function input terminals to stop acceleration or deceleration and operate the inverter at a fixed frequency.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In | $65-71$ <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal <br> configuration | Px Define(Px: P1- <br> P7 in IP20 models, <br> P1-P5 in IP66 <br> models) | 25 | XCEL Stop | $0-54$ |



### 4.13 V/F(Voltage/Frequency) Control

Configure the inverter's output voltages, gradient levels and output patterns to achieve a target output frequency with V/F control. The amount of of torque boost used during low frequency operations can also be adjusted.

### 4.13.1 Linear V/F Pattern Operation

A linear V/F pattern configures the inverter to increase or decrease the output voltage at a fixed rate for different operation frequencies based on V/F characteristics. A linear V/F pattern is partcularly useful when a constant torque load is applied.

| Group | Code | Name | LCD Display | Parameter Setting |  |  | Setting Range |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr | 09 | Control mode | Control Mode | 0 | V/F | $0-6$ | - |
|  | 18 | Base frequency | Base Freq | 50.00 | $30.00-400.00$ | Hz |  |
|  | 19 | Start frequency | Start Freq | 0.50 | $0.01-10.00$ | Hz |  |
|  | 07 | V/F pattern | V/F Pattern | 0 | Linear | $0-3$ | - |

## Linear V/F Pattern Setting Details

| Code | Description |
| :---: | :---: |
| dr. 18 Base Freq | Sets the base frequency. A base frequency is the inverter's output frequency when running at its rated voltage. Refer to the motor's rating plate to set this parameter value. |
| dr. 19 Start Freq | Sets the start frequency. A start frequency is a frequency at which the inverter starts voltage output. The inverter does not produce output voltage while the frequency reference is lower than the set frequency. However, if a deceleration stop is made while operating above the start frequency, output voltage will continue until the operation frequency reaches a full-stop $(\mathrm{OHz})$. |
|  | Inverter's <br> rated voltage <br> Voltage   <br> Run cmd   |

## Learning Basic Features

### 4.13.2 Square Reduction V/F pattern Operation

Square reduction V/F pattern is ideal for loads such as fans and pumps. It provides nonlinear acceleration and deceleration patterns to sustain torque throughout the whole frequency range.

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bA | 07 | V/F pattern | V/F Pattern | 1 | Square | $0-3$ |

Square Reduction V/F pattern Operation - Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| bA. $07 \mathrm{~V} / \mathrm{F}$ Pattern | Sets the parameter value to 1(Square) or 3(Square2) according to the load's start characteristics. |  |  |
|  |  |  | Function |
|  | 1 | Square | The inverter produces output voltage proportional to 1.5 square of the operation frequency. |
|  | 3 | Square2 | The inverter produces output voltage proportional to 2 square of the operation frequency. This setup is ideal for variable torque loads such as fans or pumps. |



### 4.13.3 User V/F Pattern Operation

The Sinus H inverter allows the configuration of user-defined V/F patterns to suit the load characteristics of special motors.

| Group | Cod e | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bA | 07 | V/F pattern | V/F Pattern | 2 | User V/F | 0-3 | - |
|  | 41 | User Frequency1 | User Freq 1 | 15.00 |  | 0-Maximum frequency | Hz |
|  | 42 | User Voltage1 | User Volt 1 | 25 |  | 0-100 | \% |
|  | 43 | User Frequency2 | User Freq 2 | 30.00 |  | 0-Maximum frequency | Hz |
|  | 44 | User Voltage2 | User Volt 2 | 50 |  | 0-100 | \% |
|  | 45 | User Frequency3 | User Freq 3 | 45.00 |  | 0-Maximum frequency | Hz |
|  | 46 | User Voltage3 | User Volt 3 | 75 |  | 0-100 | \% |
|  | 47 | User Frequency4 | User Freq 4 | Maximum frequency |  | 0-Maximum frequency | Hz |
|  | 48 | User Voltage4 | User Volt 4 | 100 |  | 0-100 | \% |

## User V/F pattern Setting Details

| Code | Description |
| :--- | :--- |
| bA. 41 User Freq | Set the parameter values to assign arbitrary frequencies (User Freq 1-4) for |
| 1- | start and maximum frequencies. Voltages can also be set to correspond |
| bA.48 User Volt 4 | with each frequency, and for each user voltage (User Volt 1-4). |

## Learning Basic Features

The 100\% output voltage in the figure below is based on the parameter settings of bA. 15 (motor rated voltage). If bA. 15 is set to 0 it will be based on the input voltage.


## (1) Caution

- When a normal induction motor is in use, care must be taken not to configure the output pattern away from a linear V/F pattern. Non-linear V/F patterns may cause insufficient motor torque or motor overheating due to over-excitation.
- When a userV/F pattern is in use, forward torque boost (dr.16) and reverse torque boost (dr.17) do not operate.


### 4.14 Torque Boost

### 4.14.1 Manual Torque Boost

Manual torque boost enables users to adjust output voltage during low speed operation or motor start. Increase low speed torque or improve motor starting properties by manually increasing output voltage. Configure manual torque boost while running loads that require high starting torque, such as lift-type loads.

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dr | 15 | Torque boost options | Torque Boost | 0 | Manual | $0-1$ |

## ENERTRONICA

SANTERNO

## Manual Torque Boost Setting Details

| Code | Description |
| :--- | :--- |
| dr.16 Fwd Boost | Set torque boost for forward operation. |
| dr. 17 Rev Boost | Set torque boost for reverse operation. |



## (1) Caution

Excessive torque boost will result in over-excitation and motor overheating .

### 4.14.2 Auto Torque Boost

Auto torque boost enables the inverter to automatically calculate the amount of output voltage required for torque boost based on the entered motor parameters. Because auto torque boost requires motor-related parameters such as stator resistance, inductance, and no-load current, auto tuning (bA.20) has to be performed before auto torque boost can be configured [Refer to 5.9 Auto Tuning on page 205]. Similarly to manual torque boost, configure auto torque boost while running a load that requires high starting torque, such as lift-type loads.

| Grou <br> p | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dr | 15 | torque boost mode | Torque Boost | 1 | Auto | $0-1$ |

## Learning Basic Features

### 4.15 Output Voltage Setting

Output voltage settings are required when a motor's rated voltage differs from the input voltage to the inverter. Set bA. 15 to configure the motor's rated operating voltage. The set voltage becomes the output voltage of the inverter's base frequency. When the inverter operates above the base frequency, and when the motor's voltage rating is lower than the input voltage at the inverter, the inverter adjusts the voltage and supplies the motor with the voltage set at bA. 15 (motor rated voltage). If the motor's rated voltage is higher than the input voltage at the inverter, the inverter will supply the inverter input voltage to the motor.

If bA. 15 (motor rated voltage) is set to 0 , the inverter corrects the output voltage based on the input voltage in the stopped condition. If the frequency is higher than the base frequency, when the input voltage is lower than the parameter setting, the input voltage will be the inverter output voltage.

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bA | 15 | Motor rated voltage | Rated Volt | 0 | $0,170-480$ | V |

Output voltage

### 4.16 Start Mode Setting

Select the start mode to use when the operation command is input with the motor in the stopped condition.

## ENERTRONICA

SANTERNO

### 4.16.1 Acceleration Start

Acceleration start is a general acceleration mode. If there are no extra settings applied, the motor accelerates directly to the frequency reference when the command is input.

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 07 | Start mode | Start mode | 0 | Acc | $0-1$ | - |

### 4.16.2 Start After DC Braking

This start mode supplies a DC voltage for a set amount of time to provide DC braking before an inverter starts to accelerate a motor. If the motor continues to rotate due to its inertia, DC braking will stop the motor, allowing the motor to accelerate from a stopped condition. DC braking can also be used with a mechanical brake connected to a motor shaft when a constant torque load is applied, if a constant torque is required after the the mechanical brake is released.

| Grou <br> $p$ | Code | Name | LCD Display | Parameter Setting |  | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 07 | Start mode | Start Mode | 1 | DC-Start | $0-1$ | - |
|  | 12 | Start DC braking <br> time | DC-Start Time | 0.00 | $0.00-60.00$ | sec |  |
|  | 13 | DC Injection Level | DC Inj Level | 50 | $0-200$ | $\%$ |  |



## (1) Caution

The amount of DC braking required is based on the motor's rated current. Do not use DC braking resistance values that can cause current draw to exceed the rated current of the inverter. If the DC braking resistance is too high or brake time is too long, the motor may overheat or be damaged.

## Learning Basic Features

### 4.17 Stop Mode Setting

Select a stop mode to stop the inverter operation.

### 4.17.1 Deceleration Stop

Deceleration stop is a general stop mode. If there are no extra settings applied, the motor decelerates down to OHz and stops, as shown in the figure below.

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 08 | Stop mode | Stop Mode | 0 | Dec | $0-4$ |



### 4.17.2 Stop After DC Braking

When the operation frequency reaches the set value during deceleration (DC braking frequency), the inverter stops the motor by supplying DC power to the motor. With a stop command input, the inverter begins decelerating the motor. When the frequency reaches the DC braking frequency set at Ad.17, the inverter supplies DC voltage to the motor and stops it.

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting |  | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 08 | Stop mode | Stop Mode | 0 | Dec | $0-4$ | - |
|  | 14 | Output block time <br> before braking | DC-Block Time | 0.10 | $0.00-60.00$ | sec |  |
|  | 15 | DC braking time | DC-BrakeTime | 1.00 | $0-60$ | sec |  |
|  | 16 | DC braking amount | DC-Brake Level | 50 | $0-200$ | $\%$ |  |
|  | 17 | DC braking <br> frequency | DC-Brake Freq | 5.00 | $0.00-60.00$ | Hz |  |

## DC Braking After Stop Setting Details

| Code | Description <br> Ad.14 DC-Block Time |
| :--- | :--- |
| Set the time to block the inverter output before DC braking. If the inertia |  |
| of the load is great, or if DC braking frequency (Ad.17) is set too high, a |  |
| fault trip may occur due to overcurrent conditions when the inverter |  |
| supplies DC voltage to the motor. Prevent overcurrent fault trips by |  |
| adjusting the output block time before DC braking. |  |



## (1) Caution

- Note that the motor can overheat or be damaged if excessive amount of DC braking is applied to the motor, or DC braking time is set too long.
- DC braking is configured based on the motor's rated current. To prevent overheating or damaging motors, do not set the current value higher than the inverter's rated current.


## Learning Basic Features

### 4.17.3 Free Run Stop

When the Operation command is off, the inverter output turns off, and the load stops due to residual inertia.

| Grou <br> p | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 08 | Stop Method | Stop Mode | 2 | Free-Run | $0-4$ |

## Caution

Note that when there is high inertia on the output side and the motor is operating at high speed, the load's inertia will cause the motor to continue rotating even if the inverter output is blocked.

### 4.17.4 Power Braking

When the inverter's DC voltage rises above a specified level due to motor regenerated energy, a control is made to either adjust the deceleration gradient level or reaccelerate the motor in order to reduce the regenerated energy. Power braking can be used when short deceleration times are needed without brake resistors, or when optimum deceleration is needed without causing an over voltage fault trip.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad 08 | Stop mode | Stop Mode | 4 | Power Braking | $0-4$ | - |  |

## ? <br> SANTERNO

## (1) Caution

- To prevent overheating or damaging the motor, do not apply power braking to the loads that require frequent deceleration.
- Stall prevention and power braking only operate during deceleration, and power braking takes priority over stall prevention. In other words, when both Pr. 50 (stall prevention and flux braking) and Ad. 08 (power braking) are set, power braking will take precedence and operate.
- Note that if deceleration time is too short or inertia of the load is too great, an overvoltage fault trip may occur.
- Note that if a free run stop is used, the actual deceleration time can be longer than the preset deceleration time.


### 4.18 Frequency Limit

Operation frequency can be limited by setting maximum frequency, start frequency, upper limit frequency and lower limit frequency.

### 4.18.1 Frequency Limit Using Maximum Frequency and Start Frequency

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr | 19 | Start frequency | Start Freq | 0.50 | $0.01-10.00$ | Hz |
|  | 20 | Maximum <br> frequency | Max Freq | 50.00 | $40.00-400.00$ | Hz |

Frequency Limit Using Maximum Frequency and Start Frequency - Setting Details

| Code | Description |
| :--- | :--- |
| dr. 19 Start Freq | Set the lower limit value for speed unit parameters that are expressed in Hz <br> or rpm. If an input frequency is lower than the start frequency, the <br> parameter value will be 0.00. |
| dr. 20 Max Freq | Set upper and lower frequency limits. All frequency selections are restricted <br> to frequencies from within the upper and lower limits. <br> This restriction also applies when you in input a frequency reference using <br> the keypad. |

## Learning Basic Features

### 4.18.2 Frequency Limit Using Upper and Lower Limit Frequency Values

| $\begin{aligned} & \text { Grou } \\ & \text { p } \\ & \hline \end{aligned}$ | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad | 24 | Frequency limit | Freq Limit | 0 No | 0-1 | - |
|  | 25 | Frequency lower limit value | Freq Limit Lo | 0.50 | 0.0-maximum frequency | Hz |
|  | 26 | Frequency upper limit value | Freq Limit Hi | Maximum frequency | minimum- <br> maximum frequency | Hz |

Frequency Limit Using Upper and Lower Limit Frequencies - Setting Details

| Code | Description |
| :--- | :--- |
| Ad. 24 Freq Limit | The initial setting is 0(No). Changing the setting to 1(Yes) allows the <br> setting of frequencies between the lower limit frequency (Ad.25) and the <br> upper limit frequency (Ad.26). When the setting is 0(No), codesAd. 25 and <br> Ad.26 are not visible. |
| Ad. 25 Freq Limit Lo, | Set an upper limit frequency to all speed unit parameters that are <br> expressed in Hz or rpm, except for the base frequency (dr.18). Frequency <br> ad. 26 Freq Limit Hi <br> cannot be set higher than the upper limit frequency. |

- without upper / lower limits

| Frequency |
| :--- |
| Lower limit ${ }_{\text {Upper limit }}$ Max. Frequency |

## enertronca <br> SANTERNO

### 4.18.3 Frequency Jump

Use frequency jump to avoid mechanical resonance frequencies. Jump through frequency bands when a motor accelerates and decelerates. Operation frequencies cannot be set within the pre-set frequency jump band.

When a frequency setting is increased, while the frequency parameter setting value (voltage, current, RS-485 communication, keypad setting, etc.) is within a jump frequency band , the frequency will be maintained at the lower limit value of the frequency band. Then, the frequency will increase when the frequency parameter setting exceeds the range of frequencies used by the frequency jump band.

| Group | Code | Name | $\begin{aligned} & \hline \text { LCD } \\ & \text { Display } \end{aligned}$ | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad | 27 | Frequency jump | Jump Freq | 0 | No | 0-1 | - |
|  | 28 | Jump frequency lower limit1 | Jump Lo 1 | 10.00 |  | 0.00-Jump frequency upper limit 1 | Hz |
|  | 29 | Jump frequency upper limit1 | Jump Hi 1 | 15.00 |  | Jump frequency lower limit 1-Maximum frequency | Hz |
|  | 30 | Jump frequency lower limit 2 | Jump Lo 2 | 20.00 |  | 0.00-Jump frequency upper limit 2 | Hz |
|  | 31 | Jump frequency upper limit 2 | Jump Hi 2 | 25.00 |  | Jump frequency lower limit 2-Maximum frequency | Hz |
|  | 32 | Jump frequency lower limit 3 | Jump Lo 3 | 30.00 |  | 0.00-Jump frequency upper limit 3 | Hz |
|  | 33 | Jump frequency upper limit 3 | Jump Hi 3 | 35.00 |  | Jump frequency lower limit 3-Maximum frequency | Hz |

## Learning Basic Features



### 4.19 2nd Operation Mode Setting

Apply two types of operation modes and switch between them as required. For both the first and second command source, set the frequency after shifting operation commands to the multi-function input terminal. Mode swiching can be used to stop remote control during an operation using the communication option and to switch operation mode to operate via the local panel, or to operate the inverter from another remote control location.

Select one of the multi-function terminals from codes $\ln$. 65-71 and set the parameter value to 15 (2nd Source).

| $\begin{aligned} & \text { Grou } \\ & \text { p } \end{aligned}$ | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Uni |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oper ation | drv | Command source | Cmd Source* | 1 | Fx/Rx-1 | 0-4 | - |
|  | Frq | Frequency reference source | Freq Ref Src | 2 | V1 | 0-12 | - |
| bA | 04 | $2^{\text {nd }}$ Command source | Cmd 2nd Src | 0 | Keypad | 0-4 | - |
|  | 05 | $2^{\text {nd }}$ Frequency reference source | Freq 2nd Src | 0 | KeyPad-1 | 0-12 | - |
| In | 65-71 <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal configuration | Px Define(Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | 15 | 2nd Source | 0-54 | - |

* Displayed under DRV-06 in an LCD keypad.


## 2nd Operation Mode Setting Details

| Code | Description |
| :--- | :--- |
| bA.04 Cmd 2nd | If signals are provided to the multi-function terminal set as the 2 <br> command source (2nd Source), the operation can be performed using the <br> Set values from bA.04-05 instead of the set values from the drv and Frq |
| bA.05 Freq 2nd | codes in the Operation group. <br> The 2nd command source settings cannot be changed while operating with <br> Sre 1st |

## Caution

- When setting the multi-function terminal to the $2^{\text {nd }}$ command source (2nd Source) and input $(O n)$ the signal, operation state is changed because the frequency setting and the Operation command will be changed to the $2^{\text {nd }}$ command. Before shifting input to the multi-function terminal, ensure that the $2^{\text {nd }}$ command is correctly set. Note that if the deceleration time is too short or inertia of the load is too high, an overvoltage fault trip may occur.
- Depending on the parameter settings, the inverter may stop operating when you switch the command modes.


### 4.20 Multi-function Input Terminal Control

Filter time constants and the type of multi-function input terminals can be configured to improve the response of input terminals

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{In}$ | 85 | Multi-function input <br> terminal On filter | DI On Delay | 10 | $0-10000$ | ms |
|  | 86 | Multi-function input <br> terminal Off filter | DI Off Delay | 3 | $0-10000$ | ms |
|  | 87 | Multi-function input <br> terminal selection | DI NC/NO Sel | $00000^{*}$ | - | - |
|  | 90 | Multi-function input <br> terminal status | DI Status | $00000^{*}$ | - | - |

* Displayed as 111 on the keypad.


## Learning Basic Features

## Multi-function Input Terminal Control Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| In. 85 DI On Delay, In. 86 DI Off Delay | If the input terminal's state is not changed during the set time, when the terminal receives an input, it is recognized as On or Off. |  |  |
| In. 87 DI NC/NO Sel | Select terminal contact types for each input terminal. The position of the indicator light corresponds to the segment that is on as shown in the table below. With the bottom segment on, it indicates that the terminal is configured as a A terminal (Normally Open) contact. With the top segment on, it indicates that the terminal is configured as a B terminal (Normally Closed) contact. Terminals are numbered P1-P7 in IP20 models, P1-P5 in IP66 models, from right to left. |  |  |
|  | Type | B terminal status (Normally Closed) | A terminal status (Normally Open) |
|  | Keypad | 01 | 818 |
|  | LCD keypad | $\square$ | $\square$ |
| In. 90 DI Status | Display the configuration of each contact. When a segment is configured as A terminal using dr.87, the On condition is indicated by the top segment turning on. The Off condition is indicated when the bottom segment is turned on. When contacts are configured as B terminals, the segment lights behave conversely. Terminals are numbered P1-P7 in IP20 models, P1-P5 in IP66 models, from right to left. |  |  |
|  | Type | A terminal setting (On) | A terminal setting (Off) |
|  | Keypad | $\xrightarrow{80}$ | 1 |
|  | LCD keypad | $\square$ | $\square$ |

## SANTIERNO

### 4.21 P2P Setting

The P2P function is used to share input and output devices between multiple inverters. To enable P2P setting, RS-485 communication must be turned on .

Inverters connected through P2P communication are designated as either a master or a slave. The master inverter controls the input and output of the slave inverter. The slave inverter provides input and output actions. When using the multi-function output, the slave inverter can select to use either the master inverter's output or its own output. When using P2P communication, first designate the slave inverter and then the master inverter. If the master inverter is designated first, connected inverters may interpret the condition as a loss of communication.

Master Parameter

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting <br> Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CM | 95 | P2P Communication selection | Int 485 Func | 1 | P2P Master | 0-3 | - |
| US | 80 | Analog input1 | P2P In V1 | 0 |  | 0-12,000 | \% |
|  | 81 | Analog input2 | P2P In I2 | 0 |  | $\begin{aligned} & -12,000- \\ & 12,000 \end{aligned}$ | \% |
|  | 82 | Digital input | P2P In DI | 0 |  | 0-0x7F | bit |
|  | 85 | Analog output | P2P Out AO1 | 0 |  | 0-10,000 | \% |
|  | 88 | Digital output | P2P Out DO | 0 |  | 0-0x03 | bit |

Slave Parameter

| Grou <br> p | Cod <br> e | Name | LCD Display | Parameter <br> Setting |  | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CM | 95 | P2P <br> Communication <br> Selection | Int 485 Func | 2 | P2P Slave | $0-3$ | - |
|  | 96 | P2P DO setting <br> selection | P2P OUT Sel | 0 | No | $0-2$ | bit |

## P2P Setting Details

| Code | Description |
| :--- | :--- |
| CM. 95 Int 485 Func | Set master inverter to 1(P2P Master), slave inverter to 2(P2P Slave). |
| US.80-82 P2P Input Data | Input data sent from the slave inverter. |
| US.85, 88 P2P Output Data | Output data transmitted to the slave inverter. |

## Learning Basic Features

### 4.22 Multi-keypad Setting

Use multi-keypad settings to control more than one inverter with one keypad. To use this function, first configure RS-485 communication.

The group of inverters to be controlled by the keypad will include a master inverter. The master inverter monitors the other inverters, and slave inverter responds to the master inverter's input. When using multi-function output, a slave inverter can select to use either the master inverter's output or its own output. When using the multi keypad, first designate the slave inverter and then the master inverter. If the master inverter is designated first, connected inverters may interpret the condition as a loss of communication.

## Master Parameter

| Grou <br> $p$ | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CM | 95 | P2P <br> Communication <br> selection | Int 485 Func | 3 | KPD-Ready | $0-3$ | - |
| CNF | 03 | Multi-keypad ID | Multi KPD ID | 3 |  | $3-99$ | - |
|  | 42 | Multi-function key <br> selection | Multi Key Sel | 4 | Multi KPD | $0-4$ | - |

Slave Parameter

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CM | 01 | Station ID | Int485 St ID | 3 | $3-99$ | - |
|  | 95 | P2P <br> communication <br> options | Int 485 Func | 3 | KPD-Ready | $0-3$ |

Multi-keypad Setting Details

| Code | Description |
| :--- | :--- |
| CM.01 Int485 St ID | Prevents conflict by designating a unique identification value to an <br> inverter. <br> Values can be selected from numbers between 3-99. |
| CM.95 Int 485 Func Set the value to 3(KPD-Ready) for both master and slave inverter <br> CNF-03 Multi KPD <br> ID Select an inverter to monitor from the group of inverters. <br> CNF-42 Multi key <br> Sel Select a multi-function key type 4(Multi KPD). |  |

## SANTTERNO

## (1) Caution

- The multi-keypad feature will not work when the multi-keypad ID (CNF-03 Multi-KPD ID) setting is identical to the RS-485 communication station ID (CM-01 Int485 st ID) setting.
- The master/slave setting cannot be changed while the inverter is operating in slave mode.


### 4.23 User Sequence Setting

User Sequence creates a simple sequence from a combination of different function blocks. The sequence can comprise of a maximum of 18 steps using 29 function blocks and 30 void parameters.

1 Loop refers to a single execution of a user configured sequence that contains a maximum of 18 steps. Users can select a Loop Time of between 10-1,000ms.

The codes for user sequences configuration can be found in the US group (for user sequence settings) and the UF group (for function block settings).

|  | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AP | 02 | User sequence activation | User Seq En | 0 | 0-1 | - |
| US | 01 | User sequence operation command | User Seq Con | 0 | 0-2 | - |
|  | 02 | User sequence operation time | User Loop Time | 0 | 0-5 | - |
|  | $\begin{aligned} & \hline 11- \\ & 28 \\ & \hline \end{aligned}$ | Output address link1-18 | Link UserOut1- $18$ | 0 | 0-0xFFFF | - |
|  | $\begin{aligned} & \hline 31- \\ & 60 \end{aligned}$ | Input value setting1-30 | Void Para1-30 | 0 | -9999-9999 | - |
|  | 80 | Analog input 1 | $\begin{aligned} & \mathrm{P} 2 \mathrm{P} \operatorname{In} \mathrm{~V} 1(-10- \\ & 10 \mathrm{~V}) \end{aligned}$ | 0 | 0-12,000 | \% |
|  | 81 | Analog input 2 | P2P In I2 | 0 | -12,000 | \% |
|  | 82 | Digital input | P2P In D | 0 | -12,000 | bit |
|  | 85 | Analog output | P2P Out A01 | 0 | 0-0x7F | \% |
|  | 88 | Digital output | P2P Out DO | 0 | 0-0x03 | bit |
| UF | 01 | User function 1 | User Func1 | 0 | 0-28 | - |
|  | 02 | User function input 1-A | User Input 1-A | 0 | 0-0xFFFF | - |
|  | 03 | User function input 1-B | User Input 1-B | 0 | 0-0xFFFF | - |
|  | 04 | User function input 1-C | User Input 1-C | 0 | 0-0xFFFF | - |

manaus
SANTERNO

## Learning Basic Features

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 05 | User function output 1 | User Output 1 | 0 | $\begin{array}{\|l\|} \hline-32767- \\ 32767 \\ \hline \end{array}$ | - |
|  | 06 | User function 2 | User Func2 | 0 | 0-28 | - |
|  | 07 | User function input 2-A | User Input 2-A | 0 | 0-0xFFFF | - |
|  | 08 | User function input 2-B | User Input 2-B | 0 | 0-0xFFFF | - |
|  | 09 | User function input 2-C | User Input 2-C | 0 | 0-0xFFFF | - |
| UF | 10 | User function output 2 | User Output 2 | 0 | $\begin{aligned} & -32767- \\ & 32767 \end{aligned}$ | - |
|  | 11 | User function 3 | User Func3 | 0 | 0-28 | - |
|  | 12 | User function input 3-A | User Input 3-A | 0 | 0-0xFFFF | - |
|  | 13 | User function input 3-B | User Input 3-B | 0 | 0-0xFFFF | - |
|  | 14 | User function input 3-C | User Input 3-C | 0 | 0-0xFFFF | - |
|  | 15 | User function output 3 | User Output 3 | 0 | $\begin{array}{\|l\|} \hline-32767- \\ 32767 \end{array}$ | - |
|  | 16 | Uer function 4 | User Func4 | 0 | 0-28 | - |
|  | 17 | User function input 4-A | User Input 4-A | 0 | 0-0xFFFF | - |
|  | 18 | User function input 4-B | User Input 4-B | 0 | 0-0xFFFF | - |
|  | 19 | User function input 4-C | User Input 4-C | 0 | 0-0xFFFF | - |
|  | 20 | User function output 4 | User Output 4 | 0 | $\begin{array}{\|l\|} \hline-32767- \\ 32767 \\ \hline \end{array}$ | - |
|  | 21 | User function 5 | User Func5 | 0 | 0-28 | - |
|  | 22 | User function input 5-A | User Input 5-A | 0 | 0-0xFFFF | - |
|  | 23 | User function input 5-B | User Input 5-B | 0 | 0-0xFFFF | - |
|  | 24 | User function input 5-C | User Input 5-C | 0 | 0-0xFFFF | - |
|  | 25 | User function output 5 | User Output 5 | 0 | $\begin{aligned} & -32767- \\ & 32767 \\ & \hline \end{aligned}$ | - |
|  | 26 | User function 6 | User Func6 | 0 | 0-28 | - |
|  | 27 | User function input 6-A | User Input 6-A | 0 | 0-0xFFFF | - |
|  | 28 | User function input 6-B | User Input 6-B | 0 | 0-0xFFFF | - |
|  | 29 | User function input 6-C | User Input 6-C | 0 | 0-0xFFFF | - |
|  | 30 | User function output 6 | User Output 6 | 0 | $\begin{array}{\|l\|} \hline-32767- \\ 32767 \\ \hline \end{array}$ | - |
|  | 31 | User function 7 | User Func7 | 0 | 0-28 | - |
|  | 32 | User function input 7-A | User Input 7-A | 0 | 0-0xFFFF | - |
|  | 33 | User function input 7-B | User Input 7-B | 0 | 0-0xFFFF | - |

## SANTIERNO

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 34 | User function input 7-C | User Input 7-C | 0 | $0-0 x F F F F$ | - |  |
| 35 | User function output 7 | User Output 7 | 0 | $-32767-$ <br> 32767 | - |  |
| 36 | User function 8 | User Func8 | 0 | $0-28$ | - |  |
| 37 | User function input 8-A | User Input 8-A | 0 | $0-0 \times F F F F$ | - |  |
| 38 | User function input8-B | User Input 8-B | 0 | $0-0 x F F F F$ | - |  |

$\begin{array}{|l|l|l|l|l|l}\hline \text { Group } & \text { Code }\end{array}$ Name $\quad$ LCD Display $\left.\begin{array}{l}\text { Parameter } \\ \text { Setting }\end{array}\right)$

## Learning Basic Features

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  | 32767 |  |
| 61 | User function 13 | User Func13 | 0 | $0-28$ | - |  |
| 62 | User function input 13-A | User Input 13-A | 0 | $0-0 x F F F F$ | - |  |
| 63 | User function input 13-B | User Input 13-B | 0 | $0-0 x F F F F$ | - |  |
| 64 | User function input 13-C | User Input 13-C | 0 | $0-0 x F F F F$ | - |  |
| 65 | User function output 13 | User Output 13 | 0 | $-32767-$ | - |  |
| 622767 | - |  |  |  |  |  |
| 6 | User function 14 | User Func14 | 0 | $0-28$ | - |  |
| 67 | User function input 14-A | User Input 14-A | 0 | $0-0 x F F F F$ | - |  |


| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| U8 | User function input14-B | User Input 14-B | 0 | $0-0 x F F F F$ | - |  |
|  | User function input 14-C | User Input 14-C | 0 | $0-0 x F F F F$ | - |  |
|  | User function output14 | User Output 14 | 0 | $-32767-$ <br> 32767 | - |  |
|  | User function 15 | User Func15 | 0 | $0-28$ | - |  |
|  | User function input 15-A | User Input 15-A | 0 | $0-0 x F F F F$ | - |  |
|  | User function input 15-B | User Input 15-B | 0 | $0-0 x F F F F$ | - |  |
|  | User function input 15-C | User Input 15-C | 0 | $0-0 x F F F F$ | - |  |
|  | User function output 15 | User Output 15 | 0 | $-32767-$ | - |  |
| 76 | User function 16 | User Func16 | 0 | 32767 | $0-28$ | - |
| 77 | User function input 16-A | User Input 16-A | 0 | $0-0 x F F F F$ | - |  |
| 78 | User function input 16-B | User Input 16-B | 0 | $0-0 x F F F F$ | - |  |
| 79 | User function input 16-C | User Input 16-C | 0 | $0-0 x F F F F$ | - |  |
| 80 | User function output 16 | User Output 16 | 0 | $-32767-$ | - |  |
| 81 | User function 17 | User Func17 | 0 | 32767 | - |  |
| 82 | User function input 17-A | User Input 17-A | 0 | $0-28$ | - |  |
| 83 | User function input 17-B | User Input 17-B | 0 | $0-0 x F F F F$ | - |  |
| 84 | User function input 17-C | User Input 17-C | 0 | $0-0 x F F F F$ | - |  |
| 85 | User function output 17 | User Output 17 | 0 | $0-0 x F F F F$ | - |  |


| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  | 32767 |  |
|  | User function 18 | User Func18 | 0 | $0-28$ | - |  |
|  | User function input 18-A | User Input 18-A | 0 | $0-0 x F F F F$ | - |  |
|  | User function input 18-B | User Input 18-B | 0 | $0-0 x F F F F$ | - |  |
|  | User function input 18-C | User Input 18-C | 0 | $0-0 x F F F F$ | - |  |
|  | User function output 18 | User Output 18 | 0 | $-32767-$ <br> 32767 | - |  |

## User Sequence Setting Details

| Code | Description |
| :--- | :--- |
| AP.02 User Seq En | Display the parameter groups related to a user sequence. |
| US.01 User Seq Con | Set Sequence Run and Sequence Stop with the keypad. <br> Parameters cannot be adjusted during an operation. To adjust <br> parameters, the operation must be stopped. |
| US.02 User Loop Time | Set the user sequence Loop Time. <br> User sequence loop time can be set to 0.01s/0.02s/ 0.05s/0.1s/0.5s/1s. |
| US.11-28 <br> Link UserOut1-18 | Set parameters to connect 18 Function Blocks. If the input value is <br> 0x0000, an output value cannot be used. <br> To use the output value in step 1 for the frequency reference (Cmd <br> Frequency), input the communication address(0x1101) of the Cmd <br> frequency as the Link UserOut1 parameter. |
| US.31-60 Void Para1- <br> 30 | Set 30 void parameters. Use when constant (Const) parameter input is <br> needed in the user function block. |
| UF.01-90 | Set user defined functions for the 18 function blocks. <br> If the function block setting is invalid, the output of the User Output@ <br> is -1. <br> All the outputs from the User Output@ are read only, and can be used <br> with the user output link@ (Link UserOut@) of the US group. |

Function Block Parameter Structure

| Type | Description |
| :--- | :--- |
| User Func @* | Choose the function to perform in the function block. |
| User Input @-A | Communication address of the function's first input parameter. |
| User Input @-B | Communication address of the function's second input parameter. |
| User Input @-C | Communication address of the function's third input parameter. |
| User Output @ | Output value (Read Only) after performing the function block. |

[^4]
## Learning Basic Features

| Number | Type | Description |
| :---: | :---: | :---: |
| 0 | NOP | No Operation. |
| 1 | ADD | Addition operation, $(\mathrm{A}+\mathrm{B})+\mathrm{C}$ <br> If the $C$ parameter is $0 \times 0000$, it will be recognized as 0 . |
| 2 | SUB | Subtraction operation, (A - B) - C <br> If the $C$ parameter is $0 \times 0000$, it will be recognized as 0 . |
| 3 | ADDSUB | Addition andsubtraction compound operation, $(A+B)$ - C If the $C$ parameter is $0 \times 0000$, it will be recognized as 0 . |
| 4 | MIN | Output the smallest value of the input values, $\operatorname{MIN}(A, B, C)$. If the $C$ parameter is $0 \times 0000$, operate only with $A, B$. |
| 5 | MAX | Output the largest value of the input values, $M A X(A, B, C)$. If the C parameter is $0 \times 0000$, operate only with $\mathrm{A}, \mathrm{B}$. |
| 6 | ABS | Output the absolute value of the A parameter, $\|\mathrm{A}\|$. This operation does not use the B, or C parameter. |
| 7 | NEGATE | Output the negative value of the $A$ parameter, -( A ). This operation does not use the B, or C parameter. |
| 8 | REMAINDER | Remainder operation of $A$ and $B, A \% B$ This operation does not use the $C$ parameter. |
| 9 | MPYDIV | Multiplication, division compound operation, ( $\mathrm{A} \times \mathrm{B}$ )/C. If the $C$ parameter is $0 \times 0000$, output the multiplication operation of ( $\mathrm{A} \times \mathrm{B}$ ). |
| 10 | COMPARE-GT (greater than) | Comparison operation: if $(A>B)$ the output is $C$; if $(A</=B)$ the output is 0 . <br> If the condition is met, the output parameter is C . If the condition is not met, the output is 0 (False). If the C parameter is $0 \times 0000$ and if the condition is met, the output is 1(True). |
| 11 | COMPARE-GTEQ (great than or equal to) | Comparison operation; if $(A>/=B)$ output is $C$; if $(A<B)$ the output is 0. <br> If the condition is met, the output parameter is C . If the condition is not met, the output is 0 (False). If the $C$ parameter is $0 \times 0000$ and if the condition is met, the output is 1 (True). |
| 12 | COMPAREEQUAL | Comparison operation, if( $\mathrm{A}=\mathrm{B}$ ) then the output is C . For all other values the output is 0 . <br> If the condition is met, the output parameter is C . if the condition is not met, the output is 0 (False). If the C parameter is $0 \times 0000$ and if the condition is met, the output is 1 (True). |
| 13 | COMPARENEQUAL | Comparison operation, if( A ! $=\mathrm{B}$ ) then the output is C . For all other values the output is 0 . <br> If the condition is met, the output parameter is C . If the condition is not met, the output is 0 (False). If the C parameter is $0 \times 0000$ and if the condition is met, the output is 1 (True). |


| Number | Type | Description |
| :---: | :---: | :---: |
| 14 | TIMER | Adds 1 each time a user sequence completes a loop. <br> A: Max Loop, B:Timer Run/Stop, C: Choose output mode. <br> If input of $B$ is 1 , timer stops (output is 0 ). If input is 0 , timer runs. <br> If input of $C$ is 1 , output the current timer value. <br> If input of $C$ is 0 , output 1 when timer value exceeds $A(M a x)$ value. <br> If the $C$ parameter is $0 \times 0000, C$ will be recognized as 0 . <br> Timer overflow Initializes the timer value to 0 . |
| 15 | LIMIT | Sets a limit for the A parameter. <br> If input to $A$ is between $B$ and $C$, output the input to $A$. <br> If input to $A$ is larger than $B$, output $B$. If input of $A$ is smaller than $C$, output C. <br> $B$ parameter must be greater than or equal to the $C$ parameter. |
| 16 | AND | Output the AND operation, (A and B) and C. If the C parameter is $0 \times 0000$, operate only with $\mathrm{A}, \mathrm{B}$. |
| 17 | OR | Output the OR operation, (A\|B)|C. <br> If the $C$ parameter is $0 \times 0000$, operate only with $A, B$. |
| 18 | XOR | Output the XOR operation, $\left(\mathrm{A}^{\wedge} \mathrm{B}\right)^{\wedge} \mathrm{C}$. <br> If the C parameter is $0 \times 0000$, operate only with $\mathrm{A}, \mathrm{B}$. |
| 19 | AND/OR | Output the AND/OR operation, (A andB)\|C. If the $C$ parameter is $0 \times 0000$, operate only with $A, B$. |
| 20 | SWITCH | Output a value after selecting one of two inputs, if (A) then B otherwise C. <br> If the input at $A$ is 1 , the output will be $B$. If the input at $A$ is 0 , the output parameter will be C. |
| 21 | BITTEST | Test the B bit of the A parameter, $\mathrm{BITTEST}(\mathrm{A}, \mathrm{B})$. If the $B$ bit of the $A$ input is 1 , the output is 1 . If it is 0 , then the output is 0 . The input value of $B$ must be between $0-16$. If the value is higher than 16 , it will be recognized as 16 . If input at $B$ is 0 , the output is always 0 . |
| 22 | BITSET | Set the B bit of the A parameter, BITSET(A, B). Output the changed value after setting the $B$ bit to input at $A$. <br> The input value of $B$ must be between $0-16$. If the value is higher than 16 , it will be recognized as 16 . If the input at $B$ is 0 , the output is always 0 . This operation does not use the $C$ parameter. |
| 23 | BITCLEAR | Clear the B bit of the A parameter, BITCLEAR(A, B). Output the changed value after clearing the $B$ bit to input at $A$. <br> The input value of $B$ must be between $0-16$. If the value is higher than 16 , it will be recognized as 16 . If the input at $B$ is 0 , the output is always 0 . This operation does not use the $C$ parameter. |
| 24 | LOWPASSFILTER | Output the input at A as the B filter gains time constant, B x US-02 (US Loop Time. <br> In the above formula, set the time when the output of A reaches $63.3 \%$ |

## Learning Basic Features

| Number | Type | Description |
| :---: | :---: | :---: |
|  |  | C stands for the filter operation. If it is 0, the operation is started. |
| 25 | PI_CONTROL | $P$, I gain $=A, B$ parameter input, then output as $C$. Conditions for PI_PROCESS output: $\mathrm{C}=0$ : Const PI, $C=1$ : PI_PROCESS-B $>=$ PI_PROCESS-OUT $>=0$, C $=2$ : PI_PROCESS-B $>=$ PI_PROCESS-OUT $>=-($ PI_PROCESS-B), P gain =-A/100, I gain =1/(Bx Loop Time), <br> If there is an error with PI settings, output -1. |
| 26 | PI_PROCESS | $A$ is an input error, $B$ is an output limit, $C$ is the value of Const $P I$ output. <br> Range of C is $0-32,767$. |
| 27 | UPCOUNT | Upcounts the pulses and then output the value- UPCOUNT(A, B, C). After receiving a trigger input (A), outputs are upcounted by C conditions. If the $B$ inputs is 1 , do not operate and display 0 . If the $B$ inputs is 0 , operate. <br> If the C parameter is 0 , upcount when the input at A changes from 0 to 1. <br> If the $C$ parameter is 1 , upcount when the input at $A$ is changed from 1 to 0 . <br> If the C parameter is 2 , upcount whenever the input at A changes. <br> Output range is: 0-32767 |
| Number | Type | Description |
| 28 | DOWNCOUNT | Downcounts the pulses and then output the value- DOWNCOUNT(A, $\mathrm{B}, \mathrm{C})$. <br> After receiving a trigger input (A), outputs are downcounted by C conditions. If the $B$ input is 1 , do not operate and display the initial value of $C$. If the $B$ input is 0 , operate. <br> Downcounts when the A parameter changes from 0 to 1. |

## Note

The PI process block (PI_PROCESS Block) must be used after the PI control block (PI_CONTROL Block) for proper PI control operation. PI control operation cannot be performed if there is another block between the two blocks, or if the blocks are placed in an incorrect order.

### 4.24 Fire Mode Operation

This function is used to allow the inverter to ignore minor faults during emergency situations, such as fire, and provides continuous operation to fire pumps.

When turned on, Fire mode forces the inverter to ignore all minor fault trips and repeat a Reset and Restart for major fault trips, regardless of the restart trial count limit. The retry

## ENERTRONICA <br> SANTERNO

delay time set at PR. 10 (Retry Delay) still applies while the inverter performs a Reset and Restart.

## Fire Mode Parameter Settings

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad | 80 | Fire Mode selection | Fire Mode Sel | 1 | Fire Mode | 0-2 | - |
|  | 81 | Fire Mode frequency | Fire Mode Freq | 0-60 |  | 0-60 |  |
|  | 82 | Fire Mode run direction | Fire Mode Dir | 0-1 |  | 0-1 |  |
|  | 83 | Fire Mode operation count | Fire Mode Cnt | Not configurable |  | - | - |
| In | $\begin{array}{\|l\|} \hline 65-71 \\ \text { in IP20 } \\ \text { models, } \\ 65-69 \\ \text { in IP66 } \\ \text { models } \\ \hline \end{array}$ | Px terminal configuration | Px Define (Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | 51 | Fire Mode | 0-54 | - |

The inverter runs in Fire mode when Ad. 80 (Fire Mode Sel) is set to '2 (Fire Mode)', and the multi-function terminal (In. 65-71) configured for Fire mode (51: Fire Mode) is turned on. The Fire mode count increases by 1 at Ad. 83 (Fire Mode Count) each time a Fire mode operation is run.

## Caution

Fire mode operation may result in inverter malfunction. Note that Fire mode operation voids the product warranty - the inverter is covered by the product warranty only when the Fire mode count is ' 0 .'

## Fire Mode Function Setting Details

| Code | Description | Details |
| :--- | :--- | :--- |
| Ad.81 Fire | Fire mode <br> Mode <br> frequency | The frequency set at Ad. 81 (Fire mode frequency) is used for <br> frequency <br> reference inverter operation in Fire mode. The Fire mode frequency <br> takes priority over the Jog frequency, Multi-step frequencies, <br> and the keypad input frequency. |
| Dr.03Acc |  |  |
| Time / <br> Dr.04 Dec <br> Time | Fire mode <br> Acc/Dec times | When Fire mode operation is turned on, the inverter <br> accelerates for the time set at Dr.03 (Acc Time), and then <br> decelerates based on the deceleration time set at Dr.04 (Dec <br> Time). It stops when the Px terminal input is turned off (Fire <br> mode operation is turned off). |

## Learning Basic Features

| Code | Description | Details |
| :--- | :--- | :--- |
| PR.10 Retry <br> Delay | Fault trip process | Some fault trips are ignored during Fire mode operation. The <br> fault trip history is saved, but trip outputs are disabled even <br> when they are configured at the multi-function output <br> terminals. |
| Fault trips that are ignored in Fire mode <br> BX, External Trip, Low Voltage Trip, Inverter Overheat, Inverter <br> Overload, Overload, Electrical Thermal Trip, Input/Output <br> Open Phase, Motor Overload, Fan Trip, No Motor Trips, and <br> other minor fault trips. |  |  |
| For the following fault trips, the inverter performs a Reset and <br> Restart until the trip conditions are released. The retry delay <br> time set at PR. 10 (Retry Delay) applies while the inverter <br> performs a Reset and Restart. |  |  |
| Fault trips that force a Reset Restart in Fire mode |  |  |
| Over Voltage, Over Current1(OC1), Ground Fault Trip |  |  |
| The inverter stops operating when the following fault trips |  |  |
| occur: |  |  |
| Fault trips that stop inverter operation in Fire mode <br> H/W Diag, Over Current 2 (Arm-Short) |  |  |

## 5 Learning Advanced Features

This chapter describes the advanced features of the Sinus H inverter. Check the reference page in the table to see the detailed description for each of the advanced features.

| Advanced Tasks | Description | Ref. |
| :--- | :--- | :--- |
| Auxiliary frequency <br> operation | Use the main and auxiliary frequencies in the predefined <br> formulas to create various operating conditions.Auxiliary <br> frequency peration is ideal for Draw Operation* as this feature <br> enables fine-tuning of operation speeds. | p. 179 |
| Jog operation | Jog operation is a kind of a manual operation. The inverter <br> operates to a set of parameter settings predefined for Jog <br> operation, while the Jog command button is pressed. | p. 184 |
| Up-down operation | Uses the upper and lower limit value switch output signals (i.e. <br> signals from a alow meter) as Acc/Dec commands to motors. | p. 188 |
| 3-wire operation | 3-wire operation is used to latch an input signal. This <br> configuration is used to operate the inverter by a push button. | p. 189 |
| Safety operation |  |  |
| mode | This safety feature allows the inverter's operation only after a <br> signal is input to the multi-function terminal designated for the <br> safety operation mode.This feature is useful when extra care is <br> needed in operating the inverter using the multi-purpose <br> terminals. | p. 190 |
| Dwell operation | Use this feature for the lift-type loads such as elevators, when <br> the torque needs to be maintained while the brakes are applied <br> or released. | p. 192 |
| Slip compensation | This feature ensures that the motor rotates at a constant speed, <br> by compensating for the motor slip as a load increases. | p. 194 |
| PID control | PlD control provides constant automated control of flow, <br> pressure, and temperature by adjusting the output frequency <br> of the inverter. | p. 196 |
| Auto-tuning | Used to automatically measure the motor control parameters <br> to optimize the inverter's control mode performance. | p. 205 |
| Sensorless vector | An efficient mode to control magnetic flux and torque without <br> special sensors. Efficiency is achieved through the high torque <br> characteristics af low current when compared with the V/F <br> control mode. | p. 208 |
| control |  |  |

## Leaming Advanced Features

| Advanced Tasks | Description | Ref. |
| :--- | :--- | :--- |
| Speed search <br> operation | Used to prevent fault trips when the inverter voltage is output <br> while the motor is idling or free-running. | p. 234 |
| Auto restart <br> operation | Auto restart configuration is used to automatically restart the <br> inverter when a trip condition is released, after the inverter <br> stops operating due to activation of protective devices (fault <br> trips). | p. 238 |
| Second motor <br> operation | Used to switch equipment operation by connecting two <br> motors to one inverter. Configure and operate the second <br> motor using the terminal input defined for the second motor <br> operation. | p. 241 |
| Commercial power <br> source switch <br> operation | Used to switch the power source to the motor from the inverter <br> output to a commercial power source, or vice versa. | p. 243 |
| Cooling fan control | Used to control the cooling fan of the inverter. | p. 244 |
| Timer settings | Set the timer value and control the On/Off state of the multi- <br> function output and relay. | p. 253 |
| Brake control | Used to control the On/Off operation of the load's electronic <br> braking system. | p. 254 |
| Multi-function <br> output On/Off <br> control | Set standard values and turn On/Off the output relays or multi- <br> function output terminals according to the analog input value. | p. 256 |
| Regeneration <br> prevention for press <br> operation. | Used during a press operation to avoid motor regeneration, by <br> increasing the motor operation speed. | p. 257 |

* Draw operation is an openloop tension control. This feature allows a constant tension to be applied to the material that is drawn by a motor-driven device, by fine-tuning the motor speed using operation frequencies that are proportional to a ratio of the main frequency reference.


### 5.1 Operating with Auxiliary References

Frequency references can be configured with various calculated conditions that use the main and auxiliary frequency references simultaneously. The main frequency reference is used as the operating frequency, while auxiliary references are used to modify and finetune the main reference.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | Frq | Frequency reference <br> source | Freq Ref Src | 0 | Keypad-1 | $0-12$ | - |

## SANTTERNO

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bA | 01 | Auxiliary frequency <br> reference source | Aux Ref Src | 1 | V1 | $0-4$ | - |
|  | 02 | Auxiliary frequency <br> reference calculation <br> type | Aux Calc <br> Type | 0 | M+(G*A) | $0-7$ | - |
|  | 03 | Auxiliary frequency <br> reference gain | Aux Ref Gain | 0.0 |  | $-200.0-200.0$ | $\%$ |
| In | $65-$ <br> 71 | Px terminal <br> configuration | Px Define | 40 | disAux Ref | $0 \sim 54$ | - |

The table above lists the available calculated conditions for the main and auxiliary frequency references. Refer to the table to see how the calculations apply to an example where the Frq code has been set to 0 (Keypad-1), and the inverter is operating at a main reference frequency of 30.00 Hz . Signals at $-10-+10 \mathrm{~V}$ are received at terminal V1, with the reference gain set at 5\%. In this example, the resulting frequency reference is fine-tuned within the range of $27.00-33.00 \mathrm{~Hz}$ [Codes $\ln .01-16$ must be set to the default values, and In. 06 (V1 Polarity), set to 1 (Bipolar)].

## Auxiliary Reference Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| bA. 01 Aux Ref Src | Set the input type to be used for the auxiliary frequency reference. |  |  |
|  | Configuration |  | Description |
|  | 0 | None | Auxiliary frequency reference is disabled. |
|  | 1 | V1 | Sets the V1 (voltage) terminal at the control terminal block as the source of auxiliary frequency reference. |
|  | 3 | V2 | Sets the V2 (voltage) terminal at the control terminal block as the source of auxiliary frequency reference (SW2 must be set to "voltage"). |
|  | 4 | 12 | Sets the I2 (current) terminal at the control terminal block as the source of auxiliary frequency reference (SW2 must be set to "current"). |
|  | 5 | Pulse | Sets the TI (pulse) terminal at the control terminal block as the source of auxiliary frequency reference. |

## Leaming Advanced Features

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| bA. 02 Aux Calc Type | Set the auxiliary reference gain with bA. 03 (Aux Ref Gain) to configure the auxiliary reference and set the percentage to be reflected when calculating the main reference. Note that items 4-7 below may result in either plus (+) or minus (-) references (forward or reverse operation) even when unipolar analog inputs are used. |  |  |
|  |  | nfiguration | Formula for frequency reference |
|  | 0 | M + (G*A) | Main reference+(bA.03xbA.01xIn.01) |
|  | 1 | M* $\left.{ }^{*}{ }^{*} A\right)$ | x(bA.03xbA.01) |
|  | 2 | M/(G*A) | Main reference/(bA.03xbA.01) |
|  | 3 | $\mathrm{M}+\left\{\mathrm{M}^{*}\left(\mathrm{G}^{*} \mathrm{~A}\right)\right\}$ | Main reference+\{Main reference $\times$ (bA.03xbA.01) \} |
|  | 4 | $M+G * 2 *(A-50)$ | Main reference+bA.03x2x(bA.01-50)x $\ln .01$ |
|  | 5 | $M *\{G * 2 *(A-50)\}$ | Main reference $\times\{b \mathrm{D} .03 \times 2 \times(\mathrm{bA} .01-50)\}$ |
|  | 6 | $\mathrm{M} /\left\{\mathrm{G}^{*} 2 *(\mathrm{~A}-50)\right\}$ | Main reference/ \{0A.03x2x(bA.01-50) \} |
|  | 7 | $\begin{aligned} & M+M * G * 2 *(A- \\ & 50) \end{aligned}$ | Main reference+Main reference $x$ bA. $03 \times 2 \times(\mathrm{bA} .01-50)$ |
|  | M: Main frequency reference ( Hz or rpm) <br> G:Auxiliary reference gain (\%) <br> A: Auxiliary frequency reference ( Hz or rpm) or gain (\%) |  |  |
| bA. 03 Aux Ref Gain | Adjust the size of the input (bA. 01 Aux Ref Src) configured for auxiliary frequency. |  |  |
| In.65-71 (P1-P7 in IP20 models), In.65-69 (P1-P5 in IP66 models) PxDefine | Set one of the multi-function input terminals to 40(disAux Ref) and turn it on to disable the auxiliary frequency reference. The inverter will operate using the main frequency reference only. |  |  |



## Auxiliary Reference Operation Ex \#1

## Keypad Frequency Setting is Main Frequency and V1 Analog Voltage is Auxiliary Frequency

- Main frequency: Keypad (operation frequency 30 Hz )
- Maximum frequency setting (dr.20): 400 Hz
- Auxiliary frequency setting (bA.01):V1[Display by percentage(\%) or auxiliary frequency $(\mathrm{Hz})$ depending on the operation setting condition]
- Auxiliary reference gain setting (bA.03): 50\%
- In.01-32: Factory default

Example: an input voltage of 6 V is supplied to V 1 , and the frequency corresponding to 10 V is 60 Hz . The table below shows the auxiliary frequency A as $36 \mathrm{~Hz}[=60 \mathrm{~Hz} \mathrm{X}(6 \mathrm{~V} / 10 \mathrm{~V})]$ or $60 \%[=$ 100\% X (6V/10V)].

| Setting* |  | Calculating final command frequency** |
| :--- | :--- | :--- |
| 0 | $\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\mathrm{~Hz}]\right)$ | $30 \mathrm{~Hz}(\mathrm{M})+(50 \%(\mathrm{G}) \times 36 \mathrm{~Hz}(\mathrm{~A}))=48 \mathrm{~Hz}$ |
| 1 | $\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{* A} \mathrm{~A}[\%]\right)$ | $30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 60 \%(\mathrm{~A}))=9 \mathrm{~Hz}$ |
| 2 | $\mathrm{M}[\mathrm{Hz}] /\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$ | $30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 60 \%(\mathrm{~A}))=100 \mathrm{~Hz}$ |
| 3 | $\mathrm{M}[\mathrm{Hz}]+\left\{\mathrm{M}[\mathrm{Hz})^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)\right\}$ | $30 \mathrm{~Hz}(\mathrm{M})+\{30[\mathrm{~Hz}] \times(50 \%(\mathrm{G}) \times 60 \%(\mathrm{~A})) \mathrm{\}}=39 \mathrm{~Hz}$ |
| 4 | $\mathrm{M}[\mathrm{Hz}]+\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])[\mathrm{Hz}]$ | $30 \mathrm{~Hz}(\mathrm{M})+50 \%(\mathrm{G}) \times 2 \times(60 \%(\mathrm{~A})-50 \%) \times 60 \mathrm{~Hz}=36 \mathrm{~Hz}$ |
| 5 | $\mathrm{M}[\mathrm{HZ}]^{*}\left\{\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right\}$ | $30 \mathrm{~Hz}(\mathrm{M}) \times\{50 \%(\mathrm{G}) \times 2 \times(60 \%(\mathrm{~A})-50 \%)\}=3 \mathrm{~Hz}$ |
| 6 | $\mathrm{M}[\mathrm{HZ}] /\left\{\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right\}$ | $30 \mathrm{~Hz}(\mathrm{M}) /\{50 \%(\mathrm{G}) \times 2 \times(60 \%-50 \%)\}=300 \mathrm{~Hz}$ |
| 7 | $\mathrm{M}[\mathrm{HZ}]+\mathrm{M}[\mathrm{HZ}]^{*} \mathrm{G}[\%]^{*} 2 *(\mathrm{~A}[\%]-$ <br> $50[\%])$ | $30 \mathrm{~Hz}(\mathrm{M})+30 \mathrm{~Hz}(\mathrm{M}) \times 50 \%(\mathrm{G}) \times 2 \times(60 \%(\mathrm{~A})-$ <br> $50 \%)=33 \mathrm{~Hz}$ |

*M: main frequency reference (Hz or rpm)/G: auxiliary reference gain (\%)/A: auxiliary frequency reference (Hz or rpm) or gain (\%).
**If the frequency setting is changed to rpm, it is converted to rpm instead of Hz .

## Auxiliary Reference Operation Ex \#2

## Keypad Frequency Setting is Main Frequency and I2 Analog Voltage is Auxiliary Frequency

- Main frequency: Keypad (Operation frequency 30Hz)
- Maximum frequency setting (dr.20): 400 Hz
- Auxiliary frequency setting (bA.01):I2 [Display by percentage(\%) or auxiliary frequency(Hz) depending on the operation setting condition]
- Auxiliary reference gain setting (bA.03): 50\%
- In.01-32: Factory default


## Leaming Advanced Features

Example: an input current of 10.4 mA is applied to $I 2$, with the frequency corresponding to 20 mA of 60 Hz . The table below shows auxiliary frequency A as $24 \mathrm{~Hz}(=60[\mathrm{~Hz}] \mathrm{X}\{10.4[\mathrm{~mA}]-$ $4[\mathrm{~mA}]) /(20[\mathrm{~mA}]-4[\mathrm{~mA}])\}$ or $40 \%(=100[\%] \mathrm{X}\{(10.4[\mathrm{~mA}]-4[\mathrm{~mA}]) /(20[\mathrm{~mA}]-4[\mathrm{~mA}])\}$.

| Setting* |  | Calculating final command frequency** |
| :---: | :---: | :---: |
| 0 | M[Hz]+(G[\%]*A[Hz]) | $30 \mathrm{~Hz}(\mathrm{M})+(50 \%(\mathrm{G}) \times 24 \mathrm{~Hz}(\mathrm{~A}))=42 \mathrm{~Hz}$ |
| 1 | M[Hz]*(G[\%]*A[\%]) | $30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=6 \mathrm{~Hz}$ |
| 2 | M[Hz]/(G[\%]*A[\%]) | $30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=150 \mathrm{~Hz}$ |
| 3 | $\mathrm{M}[\mathrm{Hz}]+$ M $\left.[\mathrm{Hz}] *\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)\right\}$ | $30 \mathrm{~Hz}(\mathrm{M})+\{30[\mathrm{~Hz}] \times(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))\}=36 \mathrm{~Hz}$ |
| 4 | M[Hz]+G[\%]*2*(A[\%]-50[\%])[Hz] | $30 \mathrm{~Hz}(\mathrm{M})+50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%) \times 60 \mathrm{~Hz}=24 \mathrm{~Hz}$ |
| 5 | $\mathrm{M}[\mathrm{HZ}] *\{\mathrm{G}[\%] * 2 *(A[\%]-50[\%])$ | $\begin{aligned} & 30 \mathrm{~Hz}(\mathrm{M}) \times\{50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%)\} \quad=\quad- \\ & 3 \mathrm{~Hz}(\text { Reverse }) \end{aligned}$ |
| 6 | M[HZ]/ \{G[\%]*2*(A[\%]-50[\%]) \} | $\begin{aligned} & 30 \mathrm{~Hz}(\mathrm{M}) /\{50 \%(\mathrm{G}) \times 2 \times(60 \%-40 \%)\} \quad=\quad- \\ & 300 \mathrm{~Hz}(\text { Reverse }) \end{aligned}$ |
| 7 | $\begin{aligned} & \mathrm{M}[\mathrm{HZ}]+\mathrm{M}[\mathrm{HZ}] * \mathrm{G}[\%] * 2 *(\mathrm{~A}[\%]- \\ & 50[\%]) \end{aligned}$ | $\begin{aligned} & 30 \mathrm{~Hz}(\mathrm{M})+30 \mathrm{~Hz}(\mathrm{M}) \times 50 \%(\mathrm{G}) \times 2 x \\ & 50 \%)=27 \mathrm{~Hz} \end{aligned}$ |

* M: main frequency reference (Hz or rpm)/G: auxiliary reference gain (\%)/A: auxiliary frequency reference Hz or rpm ) or gain (\%).
**If the frequency setting is changed to rpm, it is converted to rpm instead of Hz .


## Auxiliary Reference Operation Ex \#3

V1 is Main Frequency and $\mathbf{I 2}$ is Auxiliary Frequency

- Main frequency: V1 (frequency command setting to 5 V and is set to 30 Hz )
- Maximum frequency setting (dr.20): 400 Hz
- Auxiliary frequency (bA.01):I2[Display by percentage (\%) or auxiliary frequency (Hz) depending on the operation setting condition]
- Auxiliary reference gain (bA.03): 50\%
- In.01-32: Factory default


## SANTRERNO

Example: an input current of 10.4 mA is applied to $I 2$, with the frequency corresponding to 20 mA of 60 Hz . The table below shows auxiliary frequency Aas $24 \mathrm{~Hz}(=60[\mathrm{~Hz}] \times\{10.4[\mathrm{~mA}]-$ $4[\mathrm{~mA}]) /(20[\mathrm{~mA}]-4[\mathrm{~mA}])\}$ or $40 \%(=100[\%] \times\{(10.4[\mathrm{~mA}]-4[\mathrm{~mA}]) /(20[\mathrm{~mA}]-4[\mathrm{~mA}])\}$.

| Setting* |  | Calculating final command frequency** |
| :---: | :---: | :---: |
| 0 | $\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{G}\left[\%{ }^{*} \mathrm{~A}[\mathrm{~Hz}]\right)\right.$ | $30 \mathrm{~Hz}(\mathrm{M})+(50 \%(\mathrm{G}) \times 24 \mathrm{~Hz}(\mathrm{~A}))=42 \mathrm{~Hz}$ |
| 1 | $\mathrm{M}\left[\mathrm{Hz}{ }^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)\right.$ | $30 \mathrm{~Hz}(\mathrm{M}) \times$ ( $50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=6 \mathrm{~Hz}$ |
| 2 | M[Hz]/(G[\%]*A[\%]) | $30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=150 \mathrm{~Hz}$ |
| 3 | $\left.\mathrm{M}[\mathrm{Hz}]+\mathrm{M}[\mathrm{Hz}]^{*}(\mathrm{G}[\%] * \mathrm{~A}[\%])\right\}$ | $30 \mathrm{~Hz}(\mathrm{M})+\{30[\mathrm{~Hz}] \times(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A})$ ) $\}=36 \mathrm{~Hz}$ |
| 4 | M[Hz]+G[\%]*2*(A[\%]-50[\%])[Hz] | $30 \mathrm{~Hz}(\mathrm{M})+50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%) \times 60 \mathrm{~Hz}=24 \mathrm{~Hz}$ |
| 5 | M[HZ]* G $^{\text {[\%]*2*(A[\%]-50[\%]) }}$ \} | $\begin{aligned} & 30 \mathrm{~Hz}(\mathrm{M}) \times\{50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%)\}=- \\ & 3 \mathrm{~Hz}(\text { Reverse ) } \end{aligned}$ |
| 6 | M[HZ]/ \{G[\%]*2*(A[\%]-50[\%]) \} | $\begin{aligned} & \begin{array}{l} 30 \mathrm{~Hz}(\mathrm{M}) / 50 \%(\mathrm{G}) \times 2 \times(60 \%-40 \%)\}=- \\ 300 \mathrm{~Hz}(\text { Reverse }) \end{array} \end{aligned}$ |
| 7 | $\begin{aligned} & \mathrm{M}[\mathrm{HZ}]+\mathrm{M}[\mathrm{HZ}] * \mathrm{G}[\%] * 2 *(\mathrm{~A}[\%]- \\ & 50[\%]) \end{aligned}$ | $\begin{aligned} & 30 \mathrm{~Hz}(\mathrm{M})+30 \mathrm{~Hz}(\mathrm{M}) \times 50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})- \\ & 50 \%)=27 \mathrm{~Hz} \end{aligned}$ |

* M: main frequency reference (Hz or rpm)/G: auxiliary reference gain (\%)/A: auxiliary frequency reference (Hz or rpm) or gain (\%).
**If the frequency setting is changed to rpm, it is converted to rpm instead of Hz .


## Note

When the maximum frequency value is high, output frequency deviation may result due to analog input variation and deviations in the calculations.

### 5.2 Jog operation

The jog operation allows for a temporary control of the inverter. You can enter a jog operation command using the multi-function terminals or by using the [ESC] key on the keypad.

The jog operation is the second highest priority operation, after the dwell operation. If a jog operation is requested while operating the multi-step, up-down, or 3-wire operation modes, the jog operation overrides all other operation modes.

### 5.2.1 Jog Operation 1-Forward Jog by Multi-function Terminal

The jog operation is available in either forward or reverse direction, using the keypad or multi-function terminal inputs. The table below lists parameter setting for a forward jog operation using the multi-function terminal inputs.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr | 11 | Jog frequency | JOG Frequency | 10.00 | $0.50-$ <br> Maximum <br> frequency | Hz |
|  | 12 | Jog operation <br> acceleration time | JOG Acc Time | 20.00 | $0.00-600.00$ | sec |
| In | Jog operation <br> deceleration time | JOG Dec Time | 30.00 | $0.00-600.00$ | sec |  |
|  | $65-71$ <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal <br> configuration | Px Define <br> (Px: P1-P7 in <br> IP20 models, <br> P1-P5 in IP66 <br> models) | 6 | JOG | - |

## Forward Jog Description Details

| Code | Description |  |
| :--- | :--- | :--- | :--- |
| In.65-71 (P1-P7 in IP20 models), | Select the jog frequency from |  |
| In.65-69 (P1-P5 in IP66 models) | P1-P7 in IP20 models and then select 6. Jog from In.65-71 |  |
| Px Define | P1- P5 in IP66 models and then select 6.Jog from In.65-69 |  |
|  |  |  |
|  |  |  |
|  |  | [Terminal settings for jog operation] |
| dr.11JOG Frequency | Set the operation frequency. |  |
| dr.12JOG Acc Time | Set the acceleration speed. |  |
| dr.13JOG Dec Time | Set the deceleration speed. |  |

If a signal is entered at the jog terminal while an FX operation command is on, the operation frequency changes to the jog frequency and the jog operation begins.


### 5.2.2 Jog Operation 2-Fwd/Rev Jog by Multi-function Terminal

For jog operation 1, an operation command must be entered to start operation, but while using jog operation 2, a terminal that is set for a forward or reverse jog also starts an operation. The priorities for frequency, Acc/Dec time and terminal block input during operation in relation to other operating modes (Dwell, 3-wire, up/down, etc.) are identical to jog operation 1. If a different operation command is entered during a jog operation, it is ignored and the operation maintains the jog frequency.

| Group | Code | Name | LCD Display | Parameter <br> setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr | 11 | Jog frequency | JOG Frequency | 10.00 | $0.50-\mathrm{Maximum}$ <br> frequency | Hz |
| 12 | Jog operation <br> acceleration time | JOG Acc Time | 20.00 | $0.00-600.00$ | sec |  |
| 13 | Operation <br> deceleration time | JOG Dec Time | 30.00 | $0.00-600.00$ | sec |  |
| In | $65-71$ <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal <br> configuration | Px Define <br> (Px: P1-P7 in IP20 <br> models, <br> P1-P5 in IP66 <br> models) | 46 | 47 | REV JOG |

## Leaming Advanced Features

dr. 12
Jog acc. time
dr. 13
Jog dec. time
dr. 12
Jog acc. time
dr. 13
Jog dec. time


### 5.2.3 Jog Operation by Keypad

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dr | 90 | [ESC] key functions | - | 1 | JOG <br> Key | - | - |

* Displayed under DRV-06 on the LCD keypad.

Set dr. 90 to 1(JOG Key) and set the drv code in the Operation group to 0(Keypad). When the [ESC] key is pressed, the SET display light flashes and the jog operation is ready to start. Pressing the [RUN] key starts the operation and the inverter accelerates or decelerates to the designated jog frequency. Releasing the [RUN] key stops the jog operation. Set the Acc/Dec time for the jog operation frequency at dr. 12 and dr.13.

|  | dr.12 <br> Jog acc. time |  |
| :--- | :---: | :---: |
| Jog dr.13 |  |  |
| Frequency |  | dr.11 |
| Run cmd |  |  |

## ENERTRONICA

SANTERNO

### 5.3 Up-down Operation

The Acc/Dec time can be controlled through input at the multi-function terminal block. Similar to a flowmeter, the up-down operation can be applied easily to a system that uses the upper-lower limit switch signals for Acc/Dec commands.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad | 65 | Up-down operation frequency save | U/D Save Mode | 1 | Yes | 0-1 | - |
| In | $\begin{aligned} & \hline 65-71 \\ & \text { in IP20 } \\ & \text { models, } \\ & 65-69 \\ & \text { in IP66 } \\ & \text { models } \end{aligned}$ | Px terminal configuration | Px Define (Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | $\begin{array}{\|l\|} \hline 17 \\ \hline 18 \\ \hline 20 \\ \hline \end{array}$ | Up <br> Down <br> U/D Clear | - | - |

## Up-down Operation Setting Details

| Code | Description |
| :--- | :--- |
| In.65-71 (P1-P7 in | Select two terminals for up-down operation and set them to 17 (UP) and |
| IP2 models), |  |
| 18 (Down), respectively. With the operation command input, acceleration |  |
| In.65-69 (P1-P5 in |  |
| IP66 models) |  |
| bxins when the Up terminal signal is on. Acceleration stops and constant |  |
| speed operation begins when the signal is off. |  |

## Leaming Advanced Features



### 5.4 3-Wire Operation

The 3-wire operation latches the signal input (the signal stays on after the button is released), and is used when operating the inverter with a push button.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operation | drv | Command <br> source | Cmd Source* | 1 | Fx/Rx-1 | - | - |
| In | 65-71 <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal <br> configuration | Px Define <br> (Px: P1-P7 in <br> IP20 models, | 14 | 3 -Wire | - | - |

[^5]
## enertronica <br> SANTERNO

To enable the 3-wire operation, the following circuit sequence is necessary. The minimum input time ( t ) for 3-wire operation is 1 ms , and the operation stops when both forward and reverse operation commands are entered at the same time.

[Terminal connection for 3-wire operation]

[3-wire operation]

### 5.5 Safe Operation Mode

When the multi-function terminals are configured to operate in safe mode, operation commands can be entered in the Safe operation mode only. Safe operation mode is used to safely and carefully control the inverter through the multi-function terminals.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 70 | Safe operation <br> selection | Run En Mode | 1 | DI <br> Dependent | - |

## Leaming Advanced Features

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In | 65-71 <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal <br> configuration | Px Define <br> (Px: P1-P7 in <br> IP20 models, <br> P1-P5 in IP66 <br> models) | 13 | RUN Enable | - |

## Safe Operation Mode Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| In.65-71 (P1-P7 in IP20 models), In.65-69 (P1-P5 in IP66 models) Px Define | From the multi-function terminals, select a terminal to operate in safe operation mode and set it to 13 (RUN Enable). |  |  |
| Ad. 70 Run En Mode | Setting |  | Function |
|  | 0 | Always Enable | Enables safe operation mode. |
|  | 1 | DI Dependent | Recognizes the operation command from a multi-function input terminal. |
| Ad. 71 Run Dis Stop | Set the operation of the inverter when the multi-function input terminal in safe operation mode is off. |  |  |
|  |  |  | Function |
|  | 1 | Free-Run | Blocks the inverter output when the multifunction terminal is off. |
|  | 2 | Q-Stop | The deceleration time (Q-Stop Time) used in safe operation mode. It stops after deceleration and then the operation can resume only when the operation command is entered again. The operation will not begin if only the multifunction terminal is on. |
|  | 3 | Q-Stop Resume | The inverter decelerates to the deceleration time (Q-Stop Time) in safe operation mode. It stops after deceleration. Then if the multifunction terminal is on, the operation resumes as soon as the operation command is entered again. |
| Ad. 72 Q-Stop Time | Sets the deceleration time when Ad. 71 (Run Dis Stop) is set to 1 (Q-Stop) or 2 (Q-Stop Resume). |  |  |



### 5.6 Dwell Operation

The dwell operation is used to manitain torque during the application and release of the brakes on lift-type loads. Inverter dwell operation is based on the Acc/Dec dwell frequency and the dwell time set by the user. The following points also affect dwell operation:

- Acceleration Dwell Operation: When an operation command runs, acceleration continues until the acceleration dwell frequency and constant speed is reached within the acceleration dwell operation time (Acc Dwell Time). After the Acc Dwell Time has passed, acceleration is carried out based on the acceleration time and the operation speed that was originally set.
- Deceleration Dwell Operation:When a stop command is run, deceleration continues until the deceleration dwell frequency and constant speed is reached within the deceleration dwell operation time (Dec Dwell Freq). After the set time has passed, deceleration is carried out based on the deceleration time that was originally set, then the operation stops.

When dr. 09 (Control Mode) is set to $0(\mathrm{~V} / \mathrm{F})$, the inverter can be used for operations with dwell frequency before opening the mechanical brake of lift-type loads, such as an elevator.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 20 | Dwell frequency during <br> acceleration | Acc Dwell <br> Freq | 5.00 | Start frequency <br> - Maximum <br> frequency | Hz |
|  | 21 | Operation time during <br> acceleration | Acc Dwell <br> Time | 0.0 | $0.0-10.0$ | s |
| 22 | Dwell frequency during <br> deceleration | Dec Dwell <br> Freq | 5.00 | Start frequency <br> - - Maximum <br> frequency | Hz |  |
|  | 23 | Operation time during <br> deceleration | Dec Dwell <br> Time | 0.0 | $0.0-60.0$ | S |

## Leaming Advanced Features

Ad. 21
Dwell acc. time


## Note

## Dwell operation does not work when:

- Dwell operation time is set to 0 sec or dwell frequency is set to 0 Hz .
- Re-acceleration is attempted from stop or during deceleration, as only the first acceleration dwell operation command is valid.

[Acceleration dwell operation]
Although deceleration dwell operation is carried out whenever stop commands are entered and the deceleration dwell frequency is passed through, it does not work during a deceleration by simple frequency change (which is not a deceleration due to a stop operation), or during external brake control applications.

[Deceleration dwell operation]


## Caution

When a dwell operation is carried out for a lift - type load before its mechanical brake is released, motors can be damaged or their lifecyle reduced due to overflow current in the motor.

### 5.7 Slip Compensation Operation

Slip refers to the variation between the setting frequency (synchronous speed) and motor rotation speed. As the load increases there can be variations between the setting frequency and motor rotation speed. Slip compensation is used for loads that require compensation of these speed variations.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dr | 09 | Control mode | Control Mode | 2 | Slip Compen | - | - |
|  | 14 | Motor capacity | Motor Capacity | 2 | 0.75 kW (0.75 kW based) | 0-15 | - |
| bA | 11 | Number of motor poles | Pole Number | 4 |  | 2-48 | - |
|  | 12 | Rated slip speed | Rated Slip | 90 (0.75 kW based) |  | 0-3000 | rpm |
|  | 13 | Rated motor current | Rated Curr | 3.6 (0.75 kW based) |  | 1.0-1000.0 | A |
|  | 14 | Motor no-load current | Noload Curr | 1.6 (0.75 kW based) |  | 0.5-1000.0 | A |
|  | 16 | Motor efficiency | Efficiency | 72 (0.75 kW based) |  | 64-100 | \% |
|  | 17 | Load inertia rate | Inertia Rate | 0 (0.75 kW based) |  | 0-8 | - |

## Leaming Advanced Features

## Slip Compensation Operation Setting Details

| Code | Description |
| :---: | :---: |
| dr. 09 Control Mode | Set dr. 09 to 2 (Slip Compen) to carry out the slip compensation operation. |
| dr. 14 Motor Capacity | Set the capacity of the motor connected to the inverter. |
| bA. 11 Pole Number | Enter the number of poles from the motor rating plate. |
| bA. 12 Rated Slip | Enter the number of rated rotations from the motor rating plate. |
| bA. 13 Rated Curr | Enter the rated current from the motor rating plate. |
| bA. 14 Noload Curr | Enter the measured current when the load on the motor axis is removed and when the motor is operated at the rated frequency. If no-load current is difficult to measure, enter a current equivalent to $30-50 \%$ of the rated motor current. |
| bA. 16 Efficiency | Enter the efficiency from the motor rating place. |
| bA. 17 Inertia Rate | Select load inertia based on motor inertia. |
|  | Setting ${ }^{\text {a }}$ ( Function |
|  | 0 0 Less than 10 times motor inertia |
|  | $1 \mathrm{l\mid l}$ 10 times motor inertia |
|  | 2-8 $\quad$ More than 10 times motor inertia |
|  | $f_{s}=f_{r}-\frac{R p m \times P}{120}$ <br> $f_{s}=$ Rated slip frequency <br> $f_{r}=$ Rated frequency <br> rpm=Number of the rated motor rotations <br> $P=$ Number of motor poles |

## Motor Rotation

| Actual speed |
| :--- |
| Synchronous speed |
| Load ratio |

## ENERTRONICA

SANTERNO

### 5.8 PID Control

Pid control is one of the most common auto-control methods. It uses a combination of proportional, integral, and differential (PID) control that provides more effective control for automated systems. The functions of PID control that can be applied to the inverter operation are as follows:

| Purpose | Function |
| :--- | :--- |
| Speed control | Controls speed by using feedback about the existing speed level <br> of the equipment or machinery to be controlled. Control <br> maintains consistent speed or operates at the target speed. |
| Pressure control | Controls pressure by using feedback about the existing pressure <br> level of the equipment or machinery to be controlled. Control <br> maintains consistent pressure or operates at the target pressure. |
| Flow control | Controls flow by using feedback about the amount of existing <br> flow in the equipment or machinery to be controlled. Control <br> maintains consistent flow or operates at a target flow. |
| Temperature control | Controls temperature by using feedback about the existing <br> temperature level of the equipment or machinery to be <br> controlled. Control maintains a consistent temperature or <br> operates at a target termperature. |

## Leaming Advanced Features

### 5.8.1 PID Basic Operation

PID operates by controlling the output frequency of the inverter, through automated system process control to maintain speed, pressure, flow, temperature and tension.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Uni t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AP | 01 | Application function selection | App Mode | 2 | Proc PID | 0-2 | - |
|  | 16 | PID output monitor | PID Output | - |  | - | - |
|  | 17 | PID reference monitor | PID Ref Value | - |  | - | - |
|  | 18 | PID feedback monitor | PID Fdb Value | - |  | - | - |
|  | 19 | PID reference setting | PID Ref Set | 50.00 |  | $\begin{aligned} & \hline-100.00- \\ & 100.00 \\ & \hline \end{aligned}$ | \% |
|  | 20 | PID reference source | PID Ref Source | 0 | Keypad | 0-11 | - |
|  | 21 | PID feedback source | PID F/B Source | 0 | V1 | 0-10 | - |
|  | 22 | PID controller proportional gain | PID P-Gain | 50.0 |  | 0.0-1000.0 | \% |
|  | 23 | PID controller integral time | PID I-Time | 10.0 |  | 0.0-200.0 | sec |
|  | 24 | PID controller differential time | PID D-Time | 0 |  | 0-1000 | $\begin{array}{\|l} \hline \mathrm{mse} \\ \mathrm{c} \\ \hline \end{array}$ |
|  | 25 | PID controller feedforward compensation gain | PID F-Gain | 0.0 |  | 0-1000 | \% |
|  | 26 | Proportional gain scale | P Gain Scale | 100.0 |  | 0.0-100.0 | \% |
|  | 27 | PID output filter | PID Out LPF | 0 |  | 0-10000 | ms |
|  | 29 | PID maximum frequency | PID Limit Hi | 50.00 |  | $\begin{aligned} & -300.00- \\ & 300.00 \end{aligned}$ | Hz |
|  | 30 | PID minimum frequency | PID Limit Lo | -50.00 |  | $\begin{aligned} & -300.00- \\ & 300.00 \end{aligned}$ | Hz |
|  | 31 | PID output reverse | PID Out Inv | 0 | No | 0-1 | - |
|  | 32 | PID output scale | PID Out Scale | 100.0 |  | 0.1-1000.0 | \% |
|  | 34 | PID controller motion frequency | Pre-PID Freq | 0.00 |  | 0-Maximum frequency | Hz |
|  | 35 | PID controller motion level | Pre-PID Exit | 0.0 |  | 0.0-100.0 | \% |
|  | 36 | PID controller motion delay time | Pre-PID Delay | 600 |  | 0-9999 | sec |

## enertronica <br> SANTERNO



## PID Basic Operation Setting Details

| Code | Description |
| :--- | :--- |
| AP. 01 App Mode | Set the code to 2 (Proc PID) to select functions for the process PID. |
| AP. 16 PID Output | Displays the existing output value of the PID controller. The unit, gain, and <br> scale that were set at AP. 42-44 are applied on the display. |
| AP. 17 PID Ref Value | Displays the existing reference value set for the PID controller. The unit, <br> gain, and scale that were set at AP. 42-44 are applied on the display. |
| AP. 18 PID Fdb Value | Displays the input value of the PID controller that is included in the latest <br> feedback. The unit, gain, and scale that were set at AP. 42-44 are applied <br> on the display. |
| AP. 19 PID Ref Set | When AP. 20 (PID control reference source) is set to 0 (Keypad), the <br> reference value can be entered. If the reference source is set to any other <br> value, the setting values for AP. 19 are void. |

## Leaming Advanced Features

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| AP. 20 PID Ref Source | Selects the reference input for the PID control. If the V1 terminal is set to PID feedback source (PID F/B Source), the V1 terminal cannot be set to the PID reference source (PID Ref Source). To set V1 as a reference source, change the feedback source. |  |  |
|  | Setting |  | Function |
|  | 0 | Keypad | Keypad |
|  | 1 | V1 | -10-10V input voltage terminal |
|  | 3 | V2 | 12 analog input terminal |
|  | 4 <br>  | 12 | [When analog voltage/current input terminal selection switch (SW2) at the terminal block is set to I (current), input $4-20 \mathrm{~mA}$ current. If it is set to V (voltage), input 0 10 V voltage] |
|  | 5 | Int. 485 | RS-485 input terminal |
|  | 7 | FieldBus | Communication command via a communication option card |
|  | 11 | Pulse | TI Pulse input terminal (0-32kHz Pulse input) |
|  | When using the keypad, the PID reference setting can be displayed at AP.17. When using the LDC keypad, the PID reference setting can be monitored from the config mode (CNF) -06-08, set to 17 (PID Ref Value). |  |  |
| AP. 21 PID F/B Source | Selects feedback input for PID control. Items can be selected as reference input, except the keypad input (Keypad-1 and Keypad-2). Feedback cannot be set to an input item that is identical to the item selected as the reference. For example, when Ap. 20 (Ref Source) is set to 1 (V1), for AP. 21 (PID F/B Source), an input other than the V1 terminal must be selected. When using the LCD keypad, the volume of feedback can be monitored using a code from the config mode (CNF) -06-08, by setting it to 18 (PID Fbk Value). |  |  |
| AP. 22 PID P-Gain, AP. 26 P Gain Scale | Sets the output ratio for differences (errors) between reference and feedback. If the Pgain is set to $50 \%$, then $50 \%$ of the error is output. The setting range for Pgain is $0.0-1,000 \%$. For ratios below $0.1 \%$, use AP. 26 (P Gain Scale). |  |  |
| AP. 23 PID I-Time | Sets the time to output accumulated errors. When the error is $100 \%$, the time taken for $100 \%$ output is set. When the integral time (PID I-Time) is set to 1 second, $100 \%$ output occurs after 1 second of the error remaining at 100\%. Differences in a normal state can be reduced by PID ITime. When the multi-function terminal block is set to 21(I-Term Clear) and is turned on, all of the accumulated errors are deleted. |  |  |
| AP. 24 PID D-Time | Sets the output volume for the rate of change in errors. If the differential time (PID D-Time) is set to 1 ms and the rate of change in errors per sec is $100 \%$, output occurs at $1 \%$ per 10 ms . |  |  |


| Code | Description |  |
| :---: | :---: | :---: |
| AP. 25 PID F-Gain | Sets the ratio that adds the target to the PID output. Adjusting this value leads to a faster response. |  |
| AP. 27 PID Out LPF | Used when the output of the PID controller changes too fast or the entire system is unstable, due to severe oscillation. In general, a lower value (default value=0) is used to speed up response time, but in some cases a higher value increases stability. The higher the value, the more stable the PID controller output is, but the slower the response time. |  |
| AP. 29 PID Limit Hi, AP. 30 PID Limit Lo | Limits the output of the controller. |  |
| AP. 32 PID Out Scale | Adjusts the volume of the controller output. |  |
| AP. 42 PID Unit Sel | Sets the unit of the control variable (available only on the LCD keypad). |  |
|  | Setting | Function |
|  | 0 \% | Displays a percentage without a physical quantity given. |
|  | 1 Bar | Various units of pressure can be selected. |
|  | 2 mBar |  |
|  | 3 Pa |  |
|  | 4 kPa |  |
|  | 5 Hz | Displays the inverter output frequency or the motor |
|  | 6 rpm | rotation speed. |
|  | 7 V |  |
|  | 8 |  |
|  | 9 l kW |  |
|  | 10 HP |  |
|  | $11{ }^{\circ} \mathrm{C}$ | Displays in Celsius or Fahrenheit. |
|  | $12{ }^{\circ} \mathrm{F}$ |  |
| AP. 43 PID Unit Gain, AP. 44 PID Unit Scale | Adjusts the size to fit the unit selected at AP. 41 PID Unit Sel. |  |
| AP. 45 PID P2-Gain | The PID controller's gain can be adjusted using the multi-function terminal. When a terminal is selected from In.65-71 in IP20 models, In.6569 in IP66 models and set to 24 (P Gain2), and if the selected terminal is entered, the gain set in AP. 22 and AP. 23 can be switched to the gain set in AP. 45 . |  |

Leaming Advanced Features


### 5.8.2 Pre-PID Operation

When an operation command is entered that does not include PID control, general acceleration occurs until the set frequency is reached. When the controlled variables increase to a particular point, the PID operation begins.

## Pre-PID Operation Setting Details

| Code | Description |
| :--- | :--- |
| AP. 34 Pre-PID Freq | When general acceleration is required, the frequency up to general <br> acceleration is entered. If Pre-PID Freq is set to 30Hz, the general operation <br> continues until the control variable (PID feedback variable) set at AP. 35 is <br> exceeded. |
| AP.35 Pre-PID Exit, | When the feedback variable of the PID controller is higher than the value <br> AP. 36 Pre-PID <br> selay at AP. 35, the PID control operation begins. However, when a value is set <br> for AP.36 (Pre-PID Delay) and a feedback variable less than the value set at <br> AP. 35 is maintained for a set amount of time, the "pre-PID Fail" fault trip will <br> occur and the output will be blocked. |



### 5.8.3 PID Operation Sleep Mode

If the operation continues at a frequency lower than the set condition for PID operation, the

## Leaming Advanced Features

PID operation sleep mode starts. When PID operation sleep mode starts, the operation will stop until the feedback exceeds the parameter value set at AP. 39 (PID WakeUp Lev).

## PID Operation Sleep Mode Setting Details

| Code | Description |
| :--- | :--- |
| AP. 37 PID Sleep DT, | If an operation frequency lower than the value set at AP. 38 is maintained <br> AP. 38 PID Sleep Freq <br> for the time set at AP.37, the operation stops and the PID operation sleep <br> mode starts. |
| AP. 39 PID WakeUp | Starts the PID operation when in PID operation sleep mode. <br> If AP. 40 is set to 0 (Below Level), the PID operation starts when the |
| AP. 40 PID WakeUp |  |
| feedback variable is less than the value set as theAP. 39 parameter |  |
| Mod |  |$\quad$| setting. If AP. 40 is set to 1 (Above Level), the operation starts when the |
| :--- |
| feedback variable is higher than the value set at AP. 39. If AP. 40 is set to 2 |
| (Beyond Level), the operation starts when the difference between the |
| reference value and the feedback variable is greater than the value set at |
| AP. 39. |



### 5.8.4 PID Switching (PID Openloop)

When one of the multi-function terminals (In. 65-71) is set to 23 (PID Openloop) and is turned on, the PID operation stops and is switched to general operation. When the terminal turns off, the PID operation starts again.

| Operation <br> mode | NIDOn | Normal Op. |
| :--- | :--- | :--- |
| Run cmd |  |  |

## Leaming Advanced Features

### 5.9 Auto Tuning

The motor parameters can be measured automatically and can be used for auto torque boost or sensorless vector control.

## Example - Auto Tuning Based on 0.75 kW, 230 V Motor

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dr | 14 | Motor capacity | Motor Capacity | 2 l | 0-16 | - |
| bA | 11 | Motor pole number | Pole Number | 4 | 2-48 | - |
|  | 12 | Rated slip speed | Rated Slip | 40 | 0-3000 | rpm |
|  | 13 | Rated motor current | Rated Curr | 3.6 | 1.0-1000.0 | A |
|  | 14 | Motor no-load current | Noload curr | 1.6 | 0.5-1000.0 | A |
|  | 15 | Motor rated voltage | Rated Volt | 230 | 0,170-480 | V |
|  | 16 | Motor efficiency | Efficiency | 72 | 64-100 | \% |
|  | 20 | Auto tuning | Auto Tuning | 0 None | - | - |
|  | 21 | Stator resistance | Rs | 2.60 | Depends on the motor setting | $\Omega$ |
|  | 22 | Leakage inductance | Lsigma | 17.94 | Depends on the motor setting | mH |
|  | 23 | Stator inductance | LS | 174.4 | Depends on the motor setting | mH |
|  | 24 | Rotor time constant | Tr | 145 | 25-5000 | ms |

## SANTERNO

## Auto Tuning Default Parameter Setting

| Motor <br> Capacity <br> (kW) |  | Rated Current (A) | No-load Current (A) | Rated Slip Frequency (Hz) | Stator <br> Resistance <br> ( $\Omega$ ) | Leakage Inductance (mH) | Stator Inductance (mH) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 2 S \\ & 2 T \end{aligned}$ | 0:0.2 | 1.1 | 0.8 | 3.33 | 14.0 | 40.4 | 385 |
|  | 1:0.4 | 2.4 | 1.4 | 3.33 | 6.70 | 26.9 | 206 |
|  | 2:0.75 | 3.4 | 1.7 | 3.00 | 2.60 | 17.94 | 174.4 |
|  | 3:1.1 | 4.7 | 2.3 | 2.84 | 1.89 | 13.05 | 126.8 |
|  | 4:1.5 | 6.4 | 2.6 | 2.67 | 1.17 | 9.29 | 115.8 |
|  | 5:2.2 | 8.6 | 3.3 | 2.33 | 0.84 | 6.63 | 90.7 |
|  | 6:3 | 8.6 | 3.3 | 2.33 | 0.84 | 6.63 | 90.7 |
|  | 7:3.7 | 13.8 | 5.0 | 2.33 | 0.50 | 4.48 | 59.7 |
|  | 8:4 | 14.9 | 5.4 | 2.15 | 0.463 | 4.14 | 55.2 |
|  | 9:5.5 | 21.0 | 7.1 | 1.50 | 0.314 | 3.19 | 41.5 |
|  | 10:7.5 | 28.2 | 9.3 | 1.33 | 0.169 | 2.844 | 31.86 |
|  | 11:11 | 40.0 | 12.4 | 1.00 | 0.120 | 1.488 | 23.91 |
|  | 12:15 | 53.6 | 15.5 | 1.00 | 0.084 | 1.118 | 19.07 |
|  | 13:18.5 | 65.6 | 19.0 | 1.00 | 0.0676 | 0.819 | 15.59 |
| $4 T$ | 0:0.2 | 0.7 | 0.5 | 3.33 | 28.0 | 121.2 | 1045 |
|  | 1:0.4 | 1.4 | 0.8 | 3.33 | 14.0 | 80.8 | 610 |
|  | 2:0.75 | 2.0 | 1.0 | 3.00 | 7.81 | 53.9 | 512 |
|  | 3:1.1 | 2.8 | 1.4 | 2.84 | 5.68 | 39.2 | 372 |
|  | 4:1.5 | 3.7 | 1.5 | 2.67 | 3.52 | 27.9 | 346 |
|  | 5:2.2 | 5.0 | 1.9 | 2.33 | 2.520 | 19.95 | 269.5 |
|  | 6:3 | 5.0 | 1.9 | 2.33 | 2.520 | 19.95 | 269.5 |
|  | 7:3.7 | 8.0 | 2.9 | 2.33 | 1.500 | 13.45 | 177.8 |
|  | 8:4 | 8.6 | 3.1 | 2.15 | 1.388 | 12.44 | 164.5 |
|  | 9:5.5 | 12.1 | 4.1 | 1.50 | 0.940 | 9.62 | 124.5 |
|  | 10:7.5 | 16.3 | 5.4 | 1.33 | 0.520 | 8.53 | 95.2 |
|  | 11:11 | 23.2 | 7.2 | 1.00 | 0.360 | 4.48 | 71.2 |
|  | 12:15 | 31.0 | 9.0 | 1.00 | 0.250 | 3.38 | 57 |
|  | 13:18.5 | 38.0 | 11.0 | 1.00 | 0.168 | 2.457 | 46.47 |
|  | 14:22 | 44.5 | 12.5 | 1.00 | 0.168 | 2.844 | 41.10 |
|  | 15:30 | 60.5 | 16.9 | 1.00 | 0.126 | 2.133 | 30.23 |
|  | 16:37 | 74.4 | 20.1 | 1.00 | 0.101 | 1.704 | 25.49 |

*When Dr. 09 (Control Mode) isset to 6 (PM Sensorless), auto tuning will configure the rated current and the stator resistor values by default.

## Auto Tuning Parameter Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| bA. 20 Auto Tuning | Select an auto tuning type and run it. Select one of the options and then press the [ENT] key to run the auto tuning. |  |  |
|  | Setting |  | Function |
|  | 0 | None | Auto tuning function is not enabled. Also, if you select one of the auto tuning options and run it, the parameter value will revert back to " 0 " when the auto tuning is complete. |
|  | 1 | All (rotating type) | Measures all motor parameters, including stator resistance (Rs), stator inductance (Lsigma), no-load current (Noload Curr), rotor time constant (Tr), etc., while the motor is rotating. As the motor is rotating while the parameters are being measured, if the load is connected to the motor spindle, the parameters may not be measured accurately. For accurate measurements, remove the load attached to the motor spindle. <br> However, note that the rotor time constant (Tr) must be measured in a stopped position. |
|  | 2 | All (static type) | Measures all parameters while the motor is in the stopped position. Measures stator resistance (Rs), stator inductance (Lsigma), no-load current (Noload Curr), rotor time constant (Tr), etc., while the motor is in the stopped position. As the motor is not rotating while the parameters are measured, the measurements are not affected when the load is connected to the motor spindle. However, when measuring parameters, do not rotate the motor spindle on the load side. |
|  | 3 | Rs+Lsigma (rotating type) | Measures parameters while the motor is rotating. The measured motor parameters are used for auto torque boost or sensorless vector control. |
|  | 6 | Tr (static type) | Measures the rotor time constant (Tr) with the motor in the stopped position and Control Mode (dr.09) is set to IM Sensorless. |
|  | 7 | All (PM) | When dr. 09 (Control Mode) is set to 6 (PM Sensorless), the motor parameters are measured in the stopped position. Check the motor's rating plate for motor specifications, such as the base frequency (dr.18), rated voltage (bA.15), pole number (bA.11). Then, perform auto tuning by setting bA. 20 to 7 [All (PM)]. The auto tuning operation will configure the bA. 21 (Rs), bA. 28 [Ld (PM)], bA. 29 [Lq (PM)], and bA. 30 (PM Flux Ref) parameters. |


| Code | Description |
| :--- | :--- |
| bA.14 | Displays motor parameters measured by auto tuning. For parameters that are not |
| Noload | included in the auto tuning measurement list, the default setting will be |
| Curr, bA.21 | displayed. |
| Rs-bA.24 Tr |  |

## D Caution

- Perform auto tuning ONLY after the motor has completely stopped running.
- Before you run auto tuning, check the motor pole number, rated slip, rated current, rated volage and efficiency on the motor's rating plate and enter the data. The default parameter setting is used for values that are not entered.
- When measuring all parameters after selecting 2 (All - static type) at bA20: compared with rotation type auto tuning where parameters are measured while the motor is rotating, parameter values measured with static auto tuning may be less accurate. Inaccuracy of the measured parameters may degrade the performance of sensorless operation. Therefore, run static type auto tuning by selecting 2 (All) only when the motor cannot be rotated (when gearing and belts cannot be separated easily, or when the motor cannot be separated mechanically from the load).
- In PM synchronous motor sensorless control mode, check the motor's rating plate and enter the motor specifications, such as the base frequency, pole number, rated current and voltage, and efficiency, before performing auto tuning and detecting other motor parameters by setting bA. 20 (Auto Tuning) to 7 [All (PM)]. The detected parameter values may not be accurate if the motor's base specifications are not entered.


### 5.10 Sensorless Vector Control for Induction Motors

Sensorless vector control is an operation to carry out vector control without the rotation speed feedback from the motor but with an estimation of the motor rotation speed calculated by the inverter. Compared to $\mathrm{V} / \mathrm{F}$ control, sensorless vector control can generate greater torque at a lower level of current.

| Group | Code | Name | LCD Display | Parameter Setting | Setting <br> Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dr | 09 | Control mode | Control Mode | 4 IM Sensorless | - | - |
|  | 14 | Motor capacity | Motor Capacity | Depends on the motor capacity | 0-15 | - |
|  | 18 | Base frequency | Base Freq | 50 | 30-400 | Hz |

## Leaming Advanced Features

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bA | 11 | Motor pole number | Pole Number | 4 | 2-48 | - |
|  | 12 | Rated slip speed | Rated Slip | Depends on the motor capacity | 0-3000 | Hz |
|  | 13 | Rated motor current | Rated Curr | Depends on the motor capacity | 1-1000 | A |
|  | 14 | Motor no-load current | Noload curr | Depends on the motor capacity | 0.5-1000 | A |
|  | 15 | Rated motor voltage | Rated Volt | 220/380/440/480 | 0,170-480 | V |
|  | 16 | Motor efficiency | Efficiency | Depends on the motor capacity | 64-100 | \% |
|  | 20 | Auto tuning | Auto Tuning | 1 All | - | - |
| Cn | 09 | Pre-Excite time | PreExTime | 1.0 | 0.0-60.0 | S |
|  | 10 | Pre-Excite amount | Flux Force | 100.0 | 100.0-300.0 | \% |
|  | 20 | Sensorless second gain display setting | SL2 G View Sel | 1 Yes | 0-1 | - |
|  | 21 | Sensorless speed controller proportional gain1 | ASR-SLP Gain1 | Depends on the motor capacity | 0-5000 | \% |
|  | 22 | Sensorless speed controller integral gain 1 | ASR-SLI Gain1 | Depends on the motor capacity | 10-9999 | ms |
|  | 23* | Sensorless speed controller proportional gain 2 | ASR-SLP Gain2 | Depends on the motor capacity | 1-1000 | \% |
|  | 24* | Sensorless speed controller integral gain 2 | ASR-SLI Gain2 | Depends on the motor capacity | 1-1000 | \% |
|  | 26* | Flux estimator proportional gain | Flux P Gain | Depends on the motor capacity | 10-200 | \% |
|  | 27* | Flux estimator integral gain | Flux I Gain | Depends on the motor capacity | 10-200 | \% |
|  | 28* | Speed estimator proportional gain | S-Est P Gain1 | Depends on the motor capacity | 0-32767 | - |


| Group | Code | Name | $\begin{aligned} & \hline \text { LCD } \\ & \text { Display } \\ & \hline \end{aligned}$ | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cn | 29* | Speed estimator integral gain1 | $\begin{array}{\|l\|l\|} \hline \text { S-Est } \\ \text { Gain1 } \end{array}$ | Depends on the motor capacity | 100-1000 | - |
|  | 30* | Speed estimator integral gain2 | $\begin{aligned} & \text { S-Est I } \\ & \text { Gain2 } \end{aligned}$ | Depends on the motor capacity | 100-10000 | - |
|  | 31* | Sensorless current controller proportional gain | ACR SLP Gain | 75 | 10-1000 |  |
|  | 32* | Sensorless current controller integral gain | $\begin{aligned} & \hline \text { ACRSLI } \\ & \text { Gain } \\ & \hline \end{aligned}$ | 120 | 10-1000 | - |
|  | 52 | Torque controller output filter | Torque Out LPF | 0 | 0-2000 | ms |
|  | 53 | Torque limit setting | Torque Lmt Src | 0 Keypad-1 | 0-12 |  |
|  | 54 | Forward direction retrograde torque limit | $\begin{aligned} & \text { FWD }+ \text { Trq } \\ & \text { Lmt } \end{aligned}$ | 180.0 | 0.0-200.0 | \% |
|  | 55 | Forward direction regenerative torque limit | FWD - Trq Lmt | 180.0 | 0.0-200.0 | \% |
|  | 56 | Reverse direction regenerative torque limit | REV +Trq <br> Lmt | 180.0 | 0.0-200.0 | \% |
|  | 57 | Reverse direction retrograde torque limit | $\begin{aligned} & \text { REV - Trq } \\ & \text { Lmt } \end{aligned}$ | 180.0 | 0.0-200.0 | \% |
|  | 85* | Flux estimator proportional gain 1 | $\begin{aligned} & \text { FluxP } \\ & \text { Gain1 } \end{aligned}$ | 370 | 100-700 |  |
|  | 86* | Flux estimator proportional gain 2 | $\begin{aligned} & \text { FluxP } \\ & \text { Gain2 } \end{aligned}$ | 0 | 0-100 |  |
|  | 87* | Flux estimator proportional gain 3 | $\begin{aligned} & \text { Flux P } \\ & \text { Gain3 } \end{aligned}$ | 100 | 0-500 |  |
|  | 88* | Flux estimator integral gain 1 | $\begin{aligned} & \text { FluxI } \\ & \text { Gain1 } \end{aligned}$ | 50 | 0-200 |  |
|  | 89* | Flux estimator integral gain2 | Flux 1 Gain2 | 50 | 0-200 | - |
|  | 90* | Flux estimator integral gain 3 | $\begin{array}{\|l\|} \hline \text { FluxI } \\ \text { Gain3 } \\ \hline \end{array}$ | 50 | 0-200 |  |
|  | 91* | Sensorless voltage compensation 1 | SL Volt Comp1 | 30 | 0-60 | - |
|  | 92* | Sensorless voltage compensation 2 | SLVolt Comp2 | 20 | 0-60 | - |
|  | 93* | Sensorless voltage compensation 3 | SLVolt Comp3 | 20 | 0-60 | - |
|  | 94* | Sensorless field weakening start frequency | SLFW Freq | 95.0 | 80.0-110.0 | \% |

## Leaming Advanced Features

| Group | Code | Name | LCD <br> Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $95^{*}$ | Sensorless gain switching <br> frequency | SLFc Freq | 2.00 | $0.00-8.00$ | Hz |

*Cn.23-32 and Cn.85-95 can be displayed only when Cn. 20 is set to 1 (Yes).

## Caution

For high-performance operation, the parameters of the motor connected to the inverter output must be measured. Use auto tuning (bA. 20 Auto Tuning) to measure the parameters before you run sensorless vector operation. To run high-performance sensorless vector control, the inverter and the motor must have the same capacity. If the motor capacity is smaller than the inverter capacity by more than two levels, control may be inaccurate. In that case, change the control mode to V/F control. When operating with sensorless vector control, do not connect multiple motors to the inverter output.

### 5.10.1 Sensorless Vector Control Operation Setting for Induction Motors

To run sensorless vector control operation, set dr. 09 (Control Mode) to 4 (IM sensorless), select the capacity of the motor you will use at dr. 14 (Motor Capacity), and select the appropriate codes to enter the rating plate information of the motor.

| Code | Input (Motor Rating Plate Information) |
| :--- | :--- |
| drv. 18 Base Freq | Base frequency |
| bA.11 Pole Number | Motor pole number |
| bA.12 Rated Slip | Rated slip |
| bA.13 Rated Curr | Rated current |
| bA.15 Rated Volt | Rated voltage |
| bA.16 Efficiency | Efficiency (when no information is on the rating plate, default values are <br> used.) |

After setting each code, set bA. 20 (Auto tuning) to 1 (All - rotation type) or 2 (All - static type) and run auto tuning. Because rotation type auto tuning is more accurate than static type auto tuning, select 1 (All - rotation type) and run auto tuning if you can rotate the motor.

## Note

## Excitation Current

A motor can be operated only after magnetic flux is generated by current flowing through a coil. The power supply used to generate the magnetic flux is called the excitation current. The stator coil that is used with the inverter does not have a permanent magnetic flux, so the magnetic flux must be generated by supplying an excitation current to the coil before operating the motor.

## Sensorless Vector Control Operation Setting Details for Induction Motors



| Code | Description |
| :---: | :---: |
| Cn. 21 ASR-SL P Gain1, Cn. 22 ASR-SLI Gain1 | Changes the speed PI controller gain during sensorless vector control. For a PI speed controller, P gain is a proportional gain for the speed deviation. If speed deviation becomes higher than the torque the output command increases accordingly. As the value increases, the faster the speed deviation decreases. The speed controller I gain is the integral gain for speed deviation. It is the time taken for the gain to reach the rated torque output command while a constant speed deviation continues. The lower the value becomes, the faster the speed deviation decreases. |
| Cn.23ASR-SLP Gain2, Cn. 24 ASR-SLI Gain2 | Appears only when 1 (Yes) is selected for Cn. 20 (SL2 G view Sel). The speed controller gain can be increased to more than the medium speed for sensorless vector control. Cn.23ASR-SL P Gain2 is set as a percentage of the low speed gain Cn. 21 ASR-SL P Gain1 - if $P$ Gain 2 is less than $100.0 \%$, the responsiveness decreases. For example, if Cn. 21 ASR-SL P Gain1 is $50.0 \%$ and Cn .23 ASR-SL P Gain2 is $50.0 \%$, the actual middle speed or faster speed controller $P$ gain is $25.0 \%$. <br> Cn. 24 ASR-SLI Gain2 is also set as a percentage of the Cn. 22 ASR-SL I Gain1. For I gain, the smaller the I gain 2 becomes, the slower the response time becomes. For example, if Cn. 22 ASR-SLI Gain1 is 100 ms and Cn. 24 ASR-SLI Gain2 is $50.0 \%$, the middle speed or faster speed controller I gain is 200 ms . The controller gain is set according to the default motor parameters and Acc/Dec time. |
| Cn. 26 Flux P Gain, Cn. 27 Flux I Gain, Cn.85-87 Flux P Gain13, Cn.88-90 Flux I Gain13 | Sensorless vector control requires the rotor flux estimator. For the adjustment of flux estimator gain, refer to 5.10.2 Sensorless Vector Control Operation on page 215. |
| Cn. 28 S-Est P Gain1, Cn. 29 S-Est I Gain1, Cn. 30 S-Est I Gain2 | Speed estimator gain for sensorless vector control can be adjusted. To adjust speed estimator gain, refer 5.10.2 Sensorless Vector Control Operation on page 215 . |
| Cn.31ACR SLP Gain, Cn. 32 ACR SLI Gain | Adjusts the $P$ and I gains of the sensorless current controller. For the adjustment of sensorless current controller gain, refer to 5.10.2 Sensorless Vector Control Operation on page 215. |


| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Cn. 53 Torque Lmt Src | Select a type of torque limit setting, using the keypad, terminal block analog input (V1 and I2) or communication power. When setting torque limit, adjust the torque size by limiting the speed controller output. Set the retrograde and regenerative limits for forward and reverse operation. |  |  |
|  |  |  | Function |
|  | 0 | KeyPad-1 | Sets the torque limit with the keypad. |
|  | 1 | KeyPad-2 |  |
|  | 2 | V1 | Sets the torque limit with the analog input terminal of the terminal block. |
|  | 4 | V2 |  |
|  | 5 | 12 |  |
|  | 6 | Int 485 | Sets the torque limit with the communication terminal of the terminal block. |
|  | 8 | FieldBus | Sets the torque limit with the FieldBus communication option. |
|  | 12 | Pulse | Sets the torque limit with the pulse input of the terminal block. |
|  | The torque limit can be set up to 200\% of the rated motor torque. |  |  |
| Cn. 54 FWD +Trq Lmt | Sets the torque limit for forward retrograde (motoring) operation. |  |  |
| Cn. 55 FWD -Trq Lmt | Sets the torque limit for forward regenerative operation. |  |  |
| Cn. 56 REV +Trq Lmt | Sets the torque limit for reverse regenerative operation. |  |  |
| Cn. 57 REV -Trq Lmt | Sets the torque limit for reverse retrograde (motoring) operation. |  |  |
| In. 02 Torque at 100\% | Sets the maximum torque. For example, if In. 02 is set to $200 \%$ and an input voltage (V1) is used, the torque limit is $200 \%$ when 10 V is entered. However, when the VI terminal is set up with the factory default setting and the torque limit setup uses a method other than the keypad, check the parameter settings in the monitor mode. In the Config Mode CNF.21-23 (only displayed when using LCD keypad), select 21(Torque limit). |  |  |
| $\begin{aligned} & \hline \text { Cn. } 91-93 \\ & \text { SLVolt Comp1-3 } \end{aligned}$ | Adjust output voltage compensation values for sensorless vector control. For output voltage compensation, refer to 5.10.2 Sensorless Vector Control Operation to on page 215. |  |  |
| Cn. 52 Torque Out LPF | Sets the time constant for torque command by setting the torque controller output filter. |  |  |

## (1) Caution

Adjust the controller gain according to the load's characteristics. However, the motor can overheat or the system may become unstable depending on the controller gain settings.

## Leaming Advanced Features

## Note

Speed controller gain can improve the speed control waveform while monitoring the changes in speed. If speed deviation does not decrease quickly, increase the speed controller P gain or decrease I gain (time in ms ). However, if the $P$ gain is increased too high or I gain is decreased too low, severe vibration may occur. If oscillation occurs in the speed waveform, try to increase I gain (ms) or reduce P gain to adjust the waveform.

### 5.10.2 Sensorless Vector Control Operation Guide for Induction Motors

| Problem | Relevant function <br> code | Troubleshooting |
| :--- | :--- | :--- |
|  | bA.24 Tr <br> Cn.09 PreExTime <br> Cn.10 Flux Force <br> Cn.31 ACR SL P Gain <br> Cn.54-57 Trq Lmt <br> Cn.93 SL Volt Comp3 | Set the value of Cn. 90 to be more than 3 <br> times the value of bA.24 or increase the <br> value of Cn.10 by increments of 50\%. If the <br> value of Cn.10 is high, an overcurrent trip at <br> start can occur. In this case, reduce the value <br> of Cn.31 by decrements of 10. |
| The amount of starting <br> torque is insufficient. | Increase the value of Trg Lmt (Cn.54-57) by <br> increments of 10\%. |  |

## ENERTRONICA <br> SANTERNO

| Problem | Relevant function <br> code | Troubleshooting |
| :--- | :--- | :--- |
| The motor hunts or <br> overcurrent trip occurs in <br> regenerative load at low <br> speed (10 Hz or lower). | Cn.92 SL Volt Comp2 <br> Cn.93 SL Volt Comp3 | Increase the value of Cn.92-93 by increments <br> of 5 at the same time. |
| Over voltage trip occurs <br> due to sudden <br> acceleration/deceleration <br> or sudden load fluctuation <br> (with no brake resistor <br> installed) at mid speed <br> (30Hz or higher). | Cn.24 ASR-SLI Gain2 | Decrease the value of Cn.2 by decrements of <br> $5 \%$. |
| Over current trip occurs <br> due to sudden load <br> fluctuation at high speed <br> (50 Hz or higher). | Cn.54-57 Trq Lmt <br> Cn.94 SL FW Freq | Decrease the value of Cn.54-57 by <br> decrements of $10 \%$ (if the parameter setting <br> is 150\% or higher). |
| Increase/decrease the value of Cn.94 by <br> increments/decrements of 5\% (set below <br> $100 \%)$. |  |  |
| The motor hunts when the <br> load increases from the <br> base frequency or higher. | Cn.22 ASR-SLI Gain1 <br> Cn.23 ASR-SLI Gain2 | Increase the value of Cn.22 by increments of <br> $50 \mathrm{~m} /$ s or decrease the value of Cn.24 by <br> decrements of 5\%. |
|  |  | At low speed (10Hz or lower), increase the <br> value of Cn.29 by increments of 5. |
| At mid speed (30 Hz or higher), increase the <br> value of Cn.28 by increments of 500. If the <br> parameter setting is too extreme, over <br> Current trip may occur at low speed. |  |  |
| load increases. | Celect 6. Tr (static type) from bA. 24 and run <br> bA.24 Rotor time constant tuning. |  |
| Cn.29 S-Est P Gain1 I Gain1 |  |  |

*Hunting: Symptom of irregular vibration of the equipment.

## Leaming Advanced Features

### 5.11 Sensorless Vector Control for PM (Permanent-Magnet) Syn Motors

Sensorless vector control is an operation that carries out vector control without rotation speed feedback from the motor but, instead, with an estimation of the motor rotation speed calculated by the inverter.

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dr | 09 | Control mode | Control Mode | 6 PM Sensorless | - | - |
|  | 14 | Motor capacity | Motor Capacity | Depends on the motor capacity | 0-15 | - |
|  | 18 | Base frequency | Base Freq | Depends on the PM motor capacity | 30-180 | Hz |
|  | 20 | Maximum frequency | Max Freq | Depends on the PM motor capacity | 40-180 | Hz |
| bA | 11 | Motor pole number | Pole Number | 4 | 2-48 | - |
|  | 13 | Rated motor current | Rated Curr | Depends on the motor capacity | 1-1000 | A |
|  | 15 | Motor-rated voltage | Rated Volt | 220/380/440/480 | 170-480 | V |
|  | 16 | Motor efficiency | Efficiency | Depends on the motor capacity | 64-100 | \% |
|  | 19 | Motor input voltage | AC Input Volt | 230/400 | 170-480 |  |
|  | 20 | Auto tuning | Auto Tuning | 7 | All (PM) | - |
|  | 32 | Q-axis inductance scale | Lq (PM) Scale | 100\% | 50-150 | \% |
|  | 34 | Auto tuning level for Ld and Lq | Ld,Lq Tune Lev | 33.3\% | 20.0-50.0 | \% |
|  | 35 | Auto tuning frequency for Ld and Lq | Ld, Lq Tune Hz | 100.0\% | 80.0-150.0 | \% |
| Cn | 12 | PM speed controller P gain 1 | ASR P Gain 1 | 100 | 0-5000 | - |
|  | 13 | PM speed controller I gain 1 | ASRI Gain 1 | 150 | 0-5000 | - |
|  | 15 | PM speed controller P gain 2 | ASR P Gain 2 | 100 | 0-5000 | - |
|  | 16 | PM speed controller I gain 2 | ASR I Gain 2 | 150 | 0-9999 | - |
|  | 33 | PM D-axis back-EMF estimated gain (\%) | PM EdGain Perc | 100.0 | 0-300.0 | \% |
|  | 34 | PM Q-axis back-EMF | PM EqGain | 100.0 | 0-300.0 | \% |

## SANTERNO

Learning Advanced Features

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | estimated gain (\%) | Perc |  |  |  |
|  | 35 | Initial pole position estimation retry | PD Repeat Num | 2 | 0-10 |  |
|  | 36 | Initial pole position estimation interval | Pulse Interval | 20 | 1-100 | ms |
|  | 37 | Initial pole position estimation pulse current (\%) | Pulse Curr \% | 15 | 10-100 | \% |
|  | 38 | Initial pole position estimation pulse voltage (\%) | Pulse Volt \% | 500 | 100-4000 | - |
|  | 39 | PM dead-time range (\%) | PMdeadBand Per | 100.0 | 50.0-200.0 | \% |
|  | 40 | PM dead-time voltage (\%) | PMdeadVolt Per | 100.0 | 50.0-200.0 | \% |
|  | 41 | PM speed estimator proportional gain | PM SpdEst Kp | 100 | 0-32000 | - |
|  | 42 | PM speed estimator integral gain | PM SpdEst Ki | 10 | 0-32000 |  |
|  | 43 | PM speed estimator proportional gain 2 | ${ }_{2}^{\text {PM SpdEst Kp }}$ | 300 | 0-32000 |  |
|  | 44 | PM speed estimator integral gain 2 | ${ }_{2}{ }_{2}$ | 30 | 0-32000 |  |
|  | 45 | Speed estimator feedforward high speed range (\%) | PM Flux FF \% | 300 | 0-1000 | \% |
|  | 46 | Initial pole position estimation type | Init Angle Sel | 1:Angle Detect | 0-2 | 0-2 |
|  | 48 | Current controller P gain | ACR P Gain | 1200 | 0-10000 |  |
|  | 49 | Current controller I gain | ACRIGain | 120 | 0-10000 |  |
|  | 50 | Voltage controller limit | V Con HR | 10.0\% | 0-1000 | \% |
|  | 51 | Voltage controller I gain | V Con Ki | 10.0\% | 0-20000 | \% |
|  | 52 | Torque controller output filter | $\begin{aligned} & \begin{array}{l} \text { Torque Out } \\ \text { LPF } \end{array} \\ & \hline \end{aligned}$ | 0 | 0-2000 | msec |
|  | 53 | Torque limit source | Torque Lmt Src | 0 | Keypad-1 | 0-12 |
|  | 54 | FWD reverse torque limit | FWD +Trq Lmt | 180.0 | 0.0-200.0 | \% |
|  | 55 | FWD regenerative torque limit | FWD -Trq Lmt | 180.0 | 0.0-200.0 | \% |

## Leaming Advanced Features

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 56 | REV regenerative <br> torque limit | REV +Trq Lmt | 180.0 | $0.0-200.0$ | $\%$ |
|  | 57 | REV reverse torque <br> limit | REV -Trq Lmt | 180.0 | $0.0-200.0$ | $\%$ |

## (1) Caution

For high-performance operation, the parameter values of the motor connected to the inverter output must be estimated. Configure the motor-related Basic function group parameters by entering the motor specification values on the rating plate. Then, perform auto tuning by setting bA. 20 (Auto Tuning) to 7 [All (PM)] to automatically measure other parameters before operating a PM synchronous motor in sensorless vector control mode. For high-performance PM sensorless vector control, the inverter and the motor must have the same capacity. The inverter control may be inaccurate if the motor capacity and the inverter capacity do not match. In sensorless vector control mode, do not connect multiple motors to the inverter output.

### 5.11.1 Detecting the Initial Pole Position

Initial pole position detection is a process to match the rotor position calculated by the inverter and the actual rotor position in a motor. In a permanent-magnet (PM) synchronous motor, rotor flux is generated from the permanent magnet attached to the rotor. Therefore, to run the motor in vector control mode, the exact rotor position (flux position) must be detected for accurate control of the torque generated by the motor.

At Cn. 46 (InitAngle Sel), select the type of initial pole position detection.
When Cn. 46 is set to 0 (None), the motor is operated according to the pole position estimated by the inverter's internal algorithm, instead of actually detecting the physical position of the rotor pole.

When Cn. 46 is set to 1 (Angle Detect), the motor is operated according to the pole position detected by changes in the current. The voltage pulse input is used to detect the pole position and results in a small amount of noise at motor startup.

When Cn .46 is set to 2 (Alignment), the inverter forcefully align the rotor position by supplying DC current for a certain period of time.

| Group | Code | Name | LCD display | Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cn | 35 | Pole position detection retry count | PD Repeat Num | 1 |  | 0-10 | - |
|  | 36 | Pole position detection interval | Pulse Interval | 20 |  | 1-100 | Ms |
|  | 37 | Pole position detection pulse current (\%) | Pulse Curr \% | 15 |  | 10-100 | \% |
|  | 38 | Pole position detection pulse voltage (\%) | Pulse Volt \% | 500 |  | 100-4000 | - |
|  | 46 | Pole position detection type | Init Angle Sel | 0 | None | 0-2 | - |
|  |  |  |  | 1 | Angle Detect |  |  |
|  |  |  |  | 2 | Alignment |  |  |

### 5.11.2 Sensorless Vector Control Mode Settings for PM Synchronous Motors

To operate a PM synchronous motor in sensorless vector control mode, set dr. 09 (Control Mode) to 6 (PM Sensorless), select the motor capacity at dr. 14 (Motor Capacity), and enter the appropriate codes in the Basic (bA) group with the motor specification values found on the motor's rating plate. If a specific motor capacity does not exist in the setting options, select a higher motor capacity that is closest to the actual motor capacity.

| Code | Rase frequency |
| :--- | :--- |
| dr. 18 Base Freq | Rating Plate Information) |
| dr. 20 Max Freq | Maximum frequency |
| bA.11 Pole Number | Motor pole number |
| bA.13 Rated Curr | Rated current |
| bA.15 Rated Volt | Rate voltage |
| bA.16 Efficiency | Efficiency |
| bA.19 AC Input Volt | Input power voltage |

After entering the codes, set bA. 20 (Auto tuning) to 7 [All(PM)] and perform a static auto tuning operation. When auto tuning is complete, the bA. 21 (Rs), bA. 28 Ld (PM), bA. 29 Lq (PM), and bA. 30 (PM Flux Ref) parameters are automatically measured and saved.

## Leaming Advanced Features

## Sensorless Vector Control Operation Setting Details

| Code | Description |
| :---: | :---: |
| Cn. 4 Carrier Freq | Sets the PWM interrupter cycle and sampling frequency cycle for a PM synchronous motor operation in sensorless vector control mode. The default carrier frequency is set at 5 kHz , and the setting range is $2-10$ kHz. |
| Cn. 11 Hold Time | Sets the zero-speed control time (hold time) in the stopped position. The output is blocked after zero-speed operation for a set period when the motor decelerates and is stopped by a stop command. |
|  |  |
|  |  |
|  | Run cmd |
|  | Changes the speed PI controller gain during a PM synchronous motor operation in sensorless vector control mode. For a PI speed controller, P gain is a proportional gain for the speed deviation. If the speed deviation becomes greater than the torque, the output command will increase accordingly. The higher the value becomes, the faster the speed deviation will decrease. <br> The speed controller I gain is the integral gain for speed deviation. It is the time taken for the gain to reach the rated torque output command while constant speed deviation continues. The lower the value becomes, the faster the speed deviation will decrease. <br> As the motor inertia varies by motor, the gain values should be changed according to the motor speeds. Cn. 12 and Cn .13 set the low speed P/I controller gain values, while Cn. 15 and Cn. 16 set the high speed P/I controller gain values, so that an appropriate gain value can be used for different motor speeds. |
| Cn. 12 ASR P Gain1, Cn. 13 ASRI Gain1 Cn. 15 ASR P Gain2 Cn. 16 ASRI Gain2 |  |

## ENERTRONICA

SANTERNO

| Code | Description |
| :---: | :---: |
| Cn. 33 PM EdGain Perc, Cn. 34 PM EqGain Perc | To ensure that the back-EMF with rotor position information can be appropriately estimated during a PM synchronous motor operation in sensorless vector control mode, set these values as a percentage of the proportional gain, which is designed to have stable estimator polarity. <br> Higher values result in faster responses, with higher chances of increased motor vibration. <br> Excessively low values may result in motor startup failure due to slow response rate. |
| Cn. 41 PM SpdEst Kp, Cn. 42 PM SpdEst Ki Cn. 43 PM SpdEst Kp2 Cn. 44 PM SpdEst Ki2 | Set these parameters to change the speed estimator gain during a PM synchronous motor operation in sensorless vector control mode. If fault trips occur or excessive oscillation is observed at low speeds, decrease the value at Cn. 41 in 10\% decrements until the motor operates stably. <br> If ripples occur during normal operation, increase the value at Cn. 42. <br> In addition to this, the values at Cn .43 and Cn .44 are used in $2 \mathrm{~S} / \mathrm{T}$ Sinus H models only, according to the following pictures. |

## Leaming Advanced Features

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Cn. 39 PMdeadBand Per Cn.40PMdeadVolt Per | Sets the output compensation values during a PM synchronous motor operation in sensorless vector control mode. <br> If the motor fails to operate at low speeds at or below $5 \%$ of the rated motor speed, increase the values set at Cn. 39 and Cn. 40 by 10\% increments. Decrease the values in 10\% decrements if a clanking noise occurs at motor startup and motor stop. |  |  |
| Cn. 45 PM Flux FF \% | Sets the high-speed portion of the feed forward rate against the backEMF during a PM synchronous motor operation in sensorless vector control mode. Feed forwarding enhances operation of the speed estimator. <br> Increase the value at Cn. 45 in 10\% increments to suppress motor oscillation under load. A fault trip may occur if this value is set too high. |  |  |
| Cn. 48 ACR P-Gain Cn. 49 ACR I-Gain | Sets the gain values for the PI current controller in a synchronous motor. <br> The $P$ gain is the proportional gain for the current deviation. The current deviation decreases faster with higher values, as the deviation in voltage output command increases with increased deviation. The I gain is the integral gain for the current deviation. Deviation in normal operation decreases with higher values. <br> However, the gain values are limited by the carrier frequency. A fault trip may occur due to interference if you set the gain values too high. |  |  |
| Cn. 53 Torque Lmt Src | The torque limit value is used to adjust the torque reference size by limiting the speed controller output. The reverse and regenerative torque limits may be set for operations in the forward or reverse direction. |  |  |
|  |  |  | Function |
|  | 0 | KeyPad-1 | Sets the torque limit via the keypad. |
|  | 1 | KeyPad-2 |  |
|  | 2 | V1 | Sets the torque limit via the analog input |
|  | 4 | V2 | terminals of the terminal block. |
|  | 5 | 12 |  |
|  | 6 | Int 485 | Sets the torque limit via the communication terminal of the terminal block. |
|  | 8 | FieldBus | Sets the torque limit with the FieldBus communication option. |
|  | 9 | UserSeqLink | Sets the torque limit with a user sequence output. The torque reference is received via the common area addresses. |
|  | 12 | Pulse | Sets the torque limit with the pulse input of the terminal block. |
|  | The torque limit can be set up to 200\% of the rated motor torque. |  |  |


| Code | Description <br> Cn.54 FWD +Trq Lmt |
| :--- | :--- |
| Sn.55 FWD -Trq Lmt | Sets the reverse torque limit for forward operation. |
| Cn.56 REV +Trq Lmt | Sets the regenerative torque limit for forward operation. |
| Cn.57 REV -Trq Lmt | Sets the reverse torque limit for rever reverse operation. |
| In. 02 Torque at 100\% |  |

## (1) Caution

Adjust the controller gain according to the load's characteristics. However, the motor can overheat or the system can become unstable depending on the controller gain settings.

## Note

Speed controller gain can improve the speed control waveform while monitoring the changes in speed. If the speed deviation does not decrease fast enough, increase the speed controller $P$ gain or decrease I gain (time in ms). However, if the P gain value is increased too much or the I gain value is decreased too much, severe vibrations may occur. If oscillation occurs in the speed waveform, try to increase the I gain (ms) or reduce the $P$ gain to adjust the waveform.

### 5.11.3 Guidelines for Running a PM Synchronous Motor in Sensorless Vector Control Mode

| Problem | Relevant function code | Troubleshooting |
| :---: | :---: | :---: |
| Starting torque is insufficient. | Cn. 48 ACR P-Gain Cn. 39 PMdeadBand Per Cn.40PMdeadVolt Per | If an overcurrent trip occurs at startup, try decreasing the value at Cn .48 in 10\% decrements. <br> Try increasing the value at Cn. 39 or Cn. 40 in 10\% increments. |
| The motor hunts* when starting up. | Cn. 40 PMdeadVolt Per | Try decreasing the value at Cn. 40 in 10\% decrements. |
| The motor hunts with regenerative load at low speed ( 10 Hz or lower), or an "OCT" fault trip occurs. | Cn. 40 PMdeadVolt Per | Try increasing the value at Cn .40 in $10 \%$ increments. |
| The motor hunts or the torque is not sufficient while the load is increasing at low speed ( 10 Hz or lower). | Cn. 04 Carrier Freq Cn. 12 ASR P Gain 1 Cn. 13 ASRIGain 1 | If the motor hunts at low speeds, try increasing the value at Cn .13 in 50 msec increments. If the motor does not hunt, try increasing the value at Cn .12 in 10\% increments until the motor runs in an optimal operation condition. |
|  |  | If the motor hunts and the torque is not sufficient at $5-10 \mathrm{~Hz}$ speed range, and if the carrier frequency at Cn .04 is set to more than 3 kHz , try decreasing the value in 1 kHz decrements. |
| The motor hunts excessively during no-load operation when rated current is supplied to the motor. | Cn. 12 ASR P Gain 1 Cn. 13 ASRIGain 1 Cn. 15 ASR P Gain 2 Cn. 16 ASRI Gain 2 | Try decreasing the speed controller gains at Cn. 12-16 in 30\% decrements. |
| The value at bA. 30 (PM Flux Ref) becomes " 0 " after performing an auto tuning operation by setting bA. 20 to 7 [All (PM)]. | bA. 11 Pole Number bA. 15 Rated Volt dr. 18 Base Freq | Refer to the motor's rating plate and set the pole number at bA. 11 (Pole Number), or enter a calculated pole number: Pole Number $=(120 \times$ BaseFreq/BaseRPM $)$ <br> Refer to the motor's rating plate and set the rated voltage and base frequency at bA-15 (Rated Volt) and dr. 18 (Base Freq), and then run auto tuning again by setting |


| Problem | Relevant function code | Troubleshooting |
| :---: | :---: | :---: |
|  |  | bA-20 (Auto Tuning) to 7 [All (PM)]. |
| Fault trips occur after a static auto tuning. | $\begin{array}{\|l} \hline \text { bA. } 21 \text { Rs } \\ \text { bA. } 28 \text { Ld (PM) } \\ \text { bA. } 29 \text { Lq (PM) } \\ \text { bA. } 30 \text { PM Flux Ref } \\ \hline \end{array}$ | Motor operation may fail if a static PM auto tuning result is not accurate. Refer to the motor's rating plate and set the motor-related parameters again. |
| "OVT" occurs due to abrupt acceleration, deceleration, or massive load change while the motor is operated at midspeed (above 30 Hz ). | Cn. 16 ASR I Gain 2 | Try decreasing the value at Cn .16 in $5 \%$ decrements. |
| Speed variation occurs during an operation at rated motor speed, or during an overloaded high speed operation. | Cn. 45 PM Flux FF \% Cn. 50 V Con HR Cn. 51 V Con Ki | If the motor is operated at the rated speed, try decreasing the value at Cn. 50 in 5\% increments. If the motor response is slow, try increasing the value at Cn. 51 in 5\% increments (or, try increasing the value at Cn. 45 in 100\% increments). |
| "OC1" fault trip or jerking occurs during a high speed operation. | Cn. 41 PM SpdEst Kp Cn. 42 PM SpdEst Ki | Try increasing the value at Cn .41 in increments of 10 and the value at Cn .42 in increments of 1 . <br> Note that a fault trip may occur if the values at Cn .41 and Cn .42 are set too high. |
| Jerking occurs during a low speed operation. | Cn. 13 ASR I Gain 1 | Try increasing the value at Cn. 13 (low speed range speed controller I gain) to eliminate jerking. |
| A "clanking" noise is heard at the beginning of startup or during deceleration. | Cn. 12 ASR P Gain 1 Cn. 13 ASRI Gain 1 Cn. 40 PMdeadVolt Per | Try increasing the values at Cn .12 and Cn. 13 in 10\% increments, or try decreasing the value at Cn .40 in 10\% decrements. |
| The motor cannot reach the speed reference when it is operated at or above the rated speed, or when the acceleration is not responsive. | $\begin{aligned} & \text { Cn. } 50 \text { V Con HR } \\ & \text { Cn. } 51 \text { V Con Ki } \end{aligned}$ | Try increasing the value at Cn. 50 in 1\% increments if the motor cannot reach the speed reference. <br> Try increasing the value at Cn .51 in $10 \%$ increments if the motor acceleration is not responsive. |
| "OC1" trip occurs after an abrupt regenerative load (over 100\%). | Cn. 12 ASR P Gain 1 Cn. 13 ASRI Gain 1 | Try decreasing the values at Cn. 12 and Cn. 13 in 10\% decrements. |
| The motor jerks during acceleration. | Cn. 42 PM SpdEst Ki | Try increasing the speed estimator proportional gain at Cn. 42 in increments of 5 . |

## Leaming Advanced Features

| Problem | Relevant function code | Troubleshooting |
| :---: | :---: | :---: |
| A massive current rises when the motor is stopped during a 20:1 speed startup. | Cn. 13 ASR I Gain 1 | Try increasing the value at Cn .13 in 10\% increments. |
| An oscillation occurs when an abrupt load is applied to the motor during a low speed operation. | Cn. 41 PM SpdEst Kp Cn. 42 PM SpdEst Ki | Try increasing the values at Cn. 41 and Cn. 42 in 10\% increments. |
| During a PM speed search, the speed search stops at around $20 \%$ of the base frequency, and the motor is stopped and starts again after a massive current rises. | Cn. 69 SS Pulse Curr | Try decreasing the value at Cn. 69 in 5\% decrements. |
| During a high-speed operation in PM control mode utilizing the kinetic energy buffering, a massive current rises at around $20 \%$ of the base frequency, the motor is stopped, and it fails to start. | Cn. 78 KEB Start Lev <br> Cn. 79 KEB Stop Lev <br> Cn. 80 KEB P Gain <br> Cn. 81 KEB I Gain | Try increasing the values at Cn .78 and Cn. 79 in 5\% increments, or try doubling the gain values at Cn .80 and Cn .81 . |
| 1. When the motor is overloaded, the maximum torque limit current is supplied to the motor at startup, and the motor fails to operate due to an inverter overload fault trip. 2. Speed search fails when the a load exceeding the rated load is applied to the motor at each speed section, or a current equal to or exceeding $150 \%$ of the rated current is supplied to the motor. | bA. 29 Lq (PM) | This happens when the Lq parameter value is decreasing due to certain causes, such as self-saturation. <br> Try increasing the value (100\%) at bA. 32 in 5\% increments. |
| A fault trip occurs when the motor tries to start up or accelerate from a free run at certain speed range. | Cn. 71 Speed Search | During a PM synchronous motor operation in sensorless vector mode, the motor starts up after the initial pole position detection is made. To accelerate the motor in a free-run state, enable speed search at acceleration by setting bit 0 (0001) at Cn. 71 (Speed |

## ENERTRONICA <br> SANTERNO

| Problem | Relevant function <br> code | Troubleshooting |
| :--- | :--- | :--- |
|  |  | Search). |
| During a low speed operation, <br> the output speed search <br> becomes unstable when a <br> massive load exceeding the <br> rated load is abruptly applied <br> to the motor. | Cn.13 ASR I Gain 1 <br> Cn.40 PMdeadVolt <br> Per | The motor control may become unstable <br> due to input voltage deviation during a <br> low-speed operation with low voltage <br> input. |
| Try decreasing the values at Cn. 31 and |  |  |
| Cn.40 in 10\% decrements. |  |  |

*Hunting: Symptom of irregular vibration of the equipment.

### 5.12 Kinetic Energy Buffering Operation

When the input power supply is disconnected, the inverter's DC link voltage decreases, and a low voltage trip occurs blocking the output. A kinetic energy buffering operation uses regenerative energy generated by the motor during the blackout to maintain the DC link voltage. This extends the time for a low voltage trip to occur, after an instantaneous power interruption.

| Group | Cod <br> e | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cn | 77 | Kinetic energy buffering <br> selection | KEB Select | 1 | Yes | - | - |
|  | 78 | Kinetic energy buffering <br> start level | KEB Start Lev | 130 | $110-140$ | $\%$ |  |
|  | 79 | Kinetic energy buffering <br> stop level | KEB Stop Lev | 135 | $125-145$ | $\%$ |  |
|  | 80 | Kinetic energy buffering <br> gain | KEB Gain | 1000 | $1-20000$ | - |  |

## Leaming Advanced Features

## Kinetic Energy Buffering Operation Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Cn. 77 KEB Select | Select the kinetic energy buffering operation when the input power is disconnected. |  |  |
|  | Setting |  | Function |
|  | 0 | No | General deceleration is carried out until a low voltage trip occurs. |
|  | 1 | Yes | The inverter power frequency is controlled and the regeneration energy from the motor is charged by the inverter. |
| Cn. 78 KEB Start Lev, Cn. 79 KEB Stop Lev | Sets the start and stop points of the kinetic energy buffering operation. The set values must be based on the low voltage trip level as $100 \%$ and the stop level (Cn. 79) must be set higher than the start level (Cn.78). |  |  |
| Cn. 80 KEB Gain | This is the gain used to control the kinetic energy buffering operation using the amount of load-side inertia moment. If the load inertia is high, use a lower gain value, and if the load inertia is low, use a higher gain value. <br> If input power is disconnected and the motor vibrates severely while the kinetic energy buffering operation is carried out, set the gain (Cn.80: KEB Gain) at half the previously set value. If the gain is lowered too much, a low voltage trip may occur during the kinetic energy buffering operation (KEB). |  |  |

## Caution

Depending on the duration of Instantaneous power interruptions and the amount of load inertia, a low voltage trip may occur even during a kinetic energy buffering operation. Motors may vibrate during kinetic energy buffering operation for some loads except variable torque load (for example, fan or pump loads).

### 5.13 Torque Control

When the motor output torque is greater than the load, the speed of motor becomes too fast. To prevent this, set the speed limit. (The torque control function cannot be used while the speed limit function is running.)

The torque control function controls the motor to maintain the preset torque value. The motor rotation speed maintains the speed constantly when the output torque and load torque of the motor keep a balance. Therefore, the motor rotation speed is decided by the load when controlling the torque.

Torque control setting option

| Group | Code | Name | LCD Display | Parameter Setting | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr | 09 | Control mode | Control Mode | 4 | IM Sensorless | - |
|  | 10 | Torque control | Torque Control | 1 | Yes | - |

## Torque control setting option details

| Group | Code | Name |  | neter Setting | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dr | 02 | Cmd Torque | - | 0.0 | \% |
|  | 08 | Trq Ref Src | 0 | Keypad-1 | - |
|  | 09 | Control Mode | 4 | IM Sensorless | - |
|  | 10 | Torque Control | 1 | Yes | - |
|  | 22 | (+) Trq Gain | - | 50-150 | \% |
|  | 23 | (-) Trq Gain | - | 50-150 | \% |
| bA | 20 | Auto Tuning | 1 | Yes | - |
| Cn | 62 | Speed LmtSrc | 0 | Keypad-1 | - |
|  | 63 | FWD Speed Lmt | - | 60.00 | Hz |
|  | 64 | REV Speed Lmt | - | 60.00 | Hz |
|  | 65 | Speed Lmt Gain | - | 100 | \% |
| In | 65-71 | Px Define | 35 | Speed/Torque | - |
| OU | 31-33 | Relay x or Q1 | 27 | Torque Dect | - |
|  | 59 | TD Level | - | 100 | \% |
|  | 60 | TD Band | - | 5.0 | \% |

## Note

- To operate in torque control mode, basic operation conditions must be set. For more information, refer to 5.10.2 Sensorless Vector Control Operation on page 215.
- The torque control cannot be used in a low speed regeneration area or low load conditions.
- If you change the rotation direction while operating, an over current trip or low speed reverse direction error will be generated.


## Leaming Advanced Features

## Torque reference setting option

The torque reference can be set using the same method as the target frequency setting. If Torque Control Mode is selected, the target frequency is not used.

| Grou p | Cod e | Name | LCD Display |  | rameter Setting | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dr | 08 | Torque reference setting | Trq Ref Src | 0 | Keypad-1 |  |
|  |  |  |  | 1 | Keypad-2 |  |
|  |  |  |  | 2 | V1 |  |
|  |  |  |  | 6 | Int 485 |  |
| Cn | 02 | Torque command | Cmd Torque | -180-180 |  | \% |
|  | 62 | Speed limit setting | Speed LmtSrc | 0 | Keypad-1 |  |
|  |  |  |  | 1 | Keypad-2 |  |
|  |  |  |  | 2 | V1 |  |
|  |  |  |  | 4 | V2 |  |
|  |  |  |  | 5 | 12 |  |
|  |  |  |  | 6 | Int 485 |  |
|  | 63 | Positive-direction speed limit | FWD Speed Lmt | 0-Maximum frequency |  | Hz |
|  | 64 | Negative-direction speed limit | REV Speed Lmt | 0-Maximum frequency |  | Hz |
|  | 65 | Speed limit operation gain | Speed Lmt Gain | 100-5000 |  | \% |
| In | 02 | Torque at maximum analog input | Torque at 100\% | -12.00-12.00 |  | mA |
| CNF* | 21 | Monitor mode display 1 | Monitor Line-1 | 1 | Speed |  |
|  | 22 | Monitor mode display 2 | Monitor Line-2 | 2 | Output Current |  |
|  | 23 | Monitor mode display 3 | Monitor Line-3 | 3 | Output Voltage |  |

*Available on LCD keypad only.

## Torque reference setting details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| dr-08 | Select an input method to use as the torque reference. |  |  |
|  | Parameter Setting |  | Description |
|  | 0 | Keypad-1 | Sets the torque reference with the keypad. |
|  | 1 | Keypad-2 |  |
|  | 2 | V1 | Sets the torque reference using the voltage or current input terminal of the terminal block. |
|  | 6 | Int 485 | Sets the torque reference with the communication terminal of the terminal block. |
| Cn-02 | The torque reference can be set up to $180 \%$ of the maximum rated motor torque. |  |  |
| In-02 | Sets the maximum torque. You can check the set maximum torque in Monitor (MON) mode. |  |  |
| CNF-21-23 | Select a parameter from the Config(CNF) mode and then select(19 Torque Ref). |  |  |

## Speed limit details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Cn-62 | Select a method for setting the speed limit value. |  |  |
|  |  |  | Description |
|  | 0 | Keypad-1 | Sets the speed limit value with the keypad. |
|  | 1 | Keypad-2 |  |
|  | 2 | V1 | Sets the speed limit value using the same method as |
|  | 6 | Int 485 | the frequency command. You can check the setting in Monitor (MON) mode. |
| Cn-63 | Sets the positive-direction speed limit value. |  |  |
| Cn -64 | Sets the negative-direction speed limit value. |  |  |
| Cn-65 | Sets the decrease rate of the torque reference when the motor speed exceeds the speed limit value. |  |  |
| CNF-21~23 | Select a parameter from the Config (CNF) mode and then select21 Torque Bias. |  |  |
| In 65-71 | Select a multi-functional input terminal to set as the ( 35 Speed/Torque). If you turn on the terminal while the operation is stopped, it operates in vector control (speed limit) mode. |  |  |

## Leaming Advanced Features

### 5.14 Energy Saving Operation

### 5.14.1 Manual Energy Saving Operation

If the inverter output current is lower than the current which is set at bA. 14 (Noload Curr), the output voltage must be reduced as low as the level set at Ad. 51 (Energy Save). The voltage before the energy saving operation starts will become the base value of the percentage. Manual energy saving operation will not be carried out during acceleration and deceleration.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 50 | Energy saving <br> operation | E-Save Mode | 1 | Manual | - | - |
|  | 51 | Energy saving <br> amount | Energy Save | 30 | $0-30$ | $\%$ |  |



Output voltage

### 5.14.2 Automatic Energy Saving Operation

The amount of energy saving can be automatically calculated based on the rated motor current (bA.13) and the no-load current (bA.14). From the calculations, the output voltage can be adjusted.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 50 | Energy saving <br> operation | E-Save Mode | 2 | Auto | - | - |

## Caution

If operation frequency is changed or acceleration and /deceleration is carried out by a stop command during the energy saving operation, the actual Acc/Dec time may take longer than the set Acc/Dec time due to the time required to return to the gerneral operation from the energy saving operation.

### 5.15 Speed Search Operation

This operation is used to prevent fault trips that can occur while the inverter output voltage is disconnected and the motor is idling. Because this feature estimates the motor rotation speed based on the inverter output current, it does not give the exact speed.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cn | 69 | PM speed search pulse current | SS Pulse Curr | 15 |  | 10~100 | \% |
|  | 70 | Speed search mode selection | SS Mode | 0 | Flying Start-1 | - | - |
|  |  |  |  | 1 | Flying Start-2 |  |  |
|  |  |  |  | 2 | Flying Start-3 |  |  |
|  | 71 | Speed search operation selection | Speed Search | 0000* |  | - | bit |
|  | 72 | Speed search reference current | SS SupCurrent | - |  | 80-200 | \% |
|  | 73 | Speed search proportional gain | SS P-Gain | 100 |  | 0-9999 | - |
|  | 74 | Speed search integral gain | SSI-Gain | 200 |  | 0-9999 | - |
|  | 75 | Output block time before speed search | SS Block Time | 1.0 |  | 0-60 | sec |
| OU | 31 | Multi-function relay 1 item | Relay 1 | 19 | Speed Search | - | - |
|  | 33 | Multi-function output 1 item | Q1 Define |  |  |  |  |

## Leaming Advanced Features

## Speed Search Operation Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Cn. 69 SSPulse Cur | Sets the speed search current based on the motor's rated current. This parameter is only displayed when dr. 09 (Control Mode) is set to 6 (PM Sensorless). |  |  |
| Cn. 70 SS Mode | Select a speed search type. |  |  |
|  | Set |  | Function |
|  | 0 | Flying Start- $1$ | The speed search is carried out as it controls the inverter output current during idling below the Cn. 72 (SS Sup-Current) parameter setting. If the direction of the idling motor and the direction of operation command at restart are the same, a stable speed search function can be performed at about 10 Hz or lower. However, if the direction of the idling motor and the direction of operation command at restart are different, the speed search does not produce a satisfactory result because the direction of idling cannot be established. |
|  | 1 | Flying Start2 | The speed search is carried out as it PI controls the ripple current which is generated by the counter electromotive force during no-load rotation. Because this mode establishes the direction of the idling motor (forward/reverse), the speed search function is stable regardless of the direction of the idling motor and direction of operation command. However because the ripple current is used which is generated by the counter electromotive force at idle (the counter electromotive force is proportional to the idle speed), the idle frequency is not determined accurately and re-acceleration may start from zero speed when the speed search is performed for the idling motor at low speed (about 10-15 Hz , though it depends on motor characteristics). |
|  | 2 | Flying Start3 | This speed search is available when operating a PM synchronous motor. It is used when dr. 09 (Control Mode) is set to 6 (PM Sensorless). |



## Leaming Advanced Features



- Starting with power-on: Set bit 4 to 1 and Ad. 10 (Power-on Run) to 1 (Yes). If inverter input power is supplied while the inverter operation command is on, the speed search operation will accelerate the motor up to the frequency reference.


## Code

Cn. 72 SS Sup-Current

Cn. 73 SS P/I-Gain, Cn. 75 SS Block Time

## Description

The amount of current flow is controlled during speed search operation based on the motor's rated current. If Cn. 70 (SS mode) is set to 1 (Flying Start-2), this code is not visible.
The P/I gain of the speed search controller can be adjusted. If Cn. 70 (SS Mode) is set to 1 (Flying Start-2), different factory defaults based on motor capacity are used and defined in dr. 14 (Motor Capacity).

## Note

- If operated within the rated output, the Sinus H series inverter is designed to withstand instantaneous power interruptions within 15 ms and maintain normal operation. Based on the rated heavy load current, safe operation during an instantaneous power interruption is guaranteed for 2S, 2T and 4T inverters (whose rated input voltages are 200-240 VAC and 380480 VAC respectively).
- The DC voltage inside the inverter may vary depending on the output load. If the power interruption time is longer than 15 ms , a low voltage trip may occur.


## (1) Caution

When operating in sensorless II mode while the starting load is in free-run, the speed search function (for general acceleration) must be set for smooth operation. If the speed search function is not set, an overcurrent trip or overload trip may occur.

### 5.16 Auto Restart Settings

When inverter operation stops due to a fault and a fault trip is activated, the inverter automatically restarts based on the parameter settings.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr | 08 | Select start at trip reset | RST Restart | 0 | No | $0-1$ |$⿻-$

*Displayed as 11 on the keypad.

## Leaming Advanced Features

## Auto Restart Setting Details

| Code | Description |
| :--- | :--- |
|  | Only operates when Pr. 08 (RST Restart) is set to 1(Yes). The number of <br> attempts to try the auto restart is set at Pr. 09 (Auto Restart Count). <br> If a fault trip occurs during operation, the inverter automatically restarts <br> after the set time programmed at Pr. 10 (Retry Delay). At each restart, the <br> inverter counts the number of tries and subtracts it from the number set <br> at Pr. 09 until the retry number count reaches 0. <br> After an auto restart, if a fault trip does not occur within 60 sec, it will <br> Pr. 08 RST Restart, <br> Pr. 09 Retry Number, <br> Pr. 10 Retry Delay <br> increase the restart count number. The maximum count number is limited <br> by the number set at Pr. 09 (Auto Restart Count). <br> If the inverter stops due to low voltage, emergency stop (Bx), inverter <br> overheating, or hardware diagnosis, an auto restart is not activated. At <br> auto restart, the acceleration options are identical to those of speed <br> search operation. Codes Cn.72-75 can be set based on the load. <br> Information about the speed search function can be found at 5.15 Speed <br> Search Operation on page 234. |


[Example of auto restart with a setting of 2]

## (1) Caution

If the auto restart number is set, be careful when the inverter resets from a fault trip. The motor may automatically start to rotate.

### 5.17 Operational Noise Settings (carrier frequency settings)

| Group | Code | Name | LCD Display | Parameter Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cn | 04 | Carrier Frequency | Carrier Freq | 3.0 | $1.0-15.0$ | kHz |  |
|  | 05 | Switching Mode | PWM* Mode | 0 | Normal PWM | $0-1$ | - |

* PWM: Pulse width modulation

Operational Noise Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Cn. 04 Carrier Freq | Adjust motor operational noise by changing carrier frequency settings. Power transistors (IGBT) in the inverter generate and supply high frequency switching voltage to the motor. The switching speed in this process refers to the carrier frequency. If the carrier frequency is set high, it reduces operational noise from the motor, and if the carrier frequency is set low, it increases operational noise from the motor. |  |  |
| Cn. 05 PWM Mode | The heat loss and leakage current from the inverter can be reduced by changing the load rate option at Cn. 05 (PWM Mode). Selecting 1 (LowLeakage PWM) reduces heat loss and leakage current, compared to when 0 (Normal PWM) is selected. However, it increases the motor noise. Low leakage PWM uses 2 phase PWM modulation mode, which helps minimize degradation and reduces switching loss by approximately $30 \%$. |  |  |
|  | Item | Carrie | ncy |
|  |  | 1.0 kHz | 15 kHz |
|  |  | Low Leakage PWM | Normal PWM |
|  | Motor noise | $\uparrow$ | $\downarrow$ |
|  | Heat generation | $\downarrow$ | $\uparrow$ |
|  | Noise generation | $\downarrow$ | $\uparrow$ |
|  | Leakage current | $\downarrow$ | $\uparrow$ |

## Leaming Advanced Features

## Note

## Carrier Frequency at Factory Default Settings (all models)

- Normal load: 2 kHz (Max 5kHz)
- Heavy load: 3kHz (Max 15kHz)


## Sinus H Series Inverter Derating Standard

- Sinus H inverter is designed to respond to two types of load rates. Heavy load (heavy duty) and normal load (normal duty). The overload rate represents an acceptable load amount that exceeds rated load, and is expressed in a ratio based on the rated load and the duration. The overload capacity on the Sinus $H$ series inverter is $150 \% / 1 \mathrm{~min}$ for heavy loads, and $120 \% / 1 \mathrm{~min}$ for normal loads.
- The current rating differs from the load rating, as it also has an ambient temperature limit. For derating specifications, refer to 11.9 Continuous Rated Current Derating on page 446.
- Current rating for ambient temperature at normal load operation.

[Ambient temperature versus current rating at normal load]
- Guaranteed carrier frequency for current rating by load.

| Inverter capacity | Normal load | Heavy load |
| :--- | :--- | :--- |
| $0.4-30 \mathrm{~kW}$ | 2 kHz | 6 kHz |

## $5.18 \quad 2^{\text {nd }}$ Motor Operation

The $2^{\text {nd }}$ motor operation is used when a single inverter switch operates two motors. Using the $2^{\text {nd }}$ motor operation, a parameter for the $2^{\text {nd }}$ motor is set. The $2^{\text {nd }}$ motor is operated when a multi-function terminal input defined as a $2^{\text {nd }}$ motor function is turned on.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In | $65-71$ <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models |  | Px terminal <br> configuration | Px Define(Px: P1- <br> P7 for IP20 <br> models, P1-P5 for <br> IP66 models) | 26 | 2nd <br> Motor |

## enertronica <br> SANTERNO

## $\mathbf{2 d ~}^{\text {nd }}$ Motor Operation Setting Details

| Code | Description |
| :---: | :---: |
| In.65-71 (P1-P7 in IP20 models), In.65-69 (P1-P5 in IP66 models) Px Define | Set one of the the multi-function input terminals to 26 (2nd Motor) to display M2 (2 ${ }^{\text {nd }}$ motor group) group. An input signal to a multi-function terminal set to $2^{\text {nd }}$ motor will operate the motor according to the code settings listed below. However, if the inverter is in operation, input signals to the multifunction terminals will not read as a $2^{\text {nd }}$ motor parameter. <br> Pr. 50 (Stall Prevent) must be set first, before M2.28 (M2-Stall Lev) settings can be used. Also, Pr. 40 (ETH Trip Sel) must be set first, before M2. 29 (M2ETH 1 min ) and M2.30 (M2.ETH Cont) settings. |

Parameter Setting at Multi-function Terminal Input on a $\mathbf{2}^{\text {nd }}$ Motor

| Code | Description | Code | Description |
| :--- | :--- | :--- | :--- |
| M2.04Acc Time | Acceleration time | M2.16 Inertia Rt | Load inertia rate |
| M2.05 Dec Time | Deceleration time | M2.17 Rs | Stator resistance |
| M2.06 Capacity | Motor capacity | M2.18 Lsigma | Leakage inductance |
| M2.07 Bas Erea | Motor base frequency | M2.19 Ls | Stator inductance |
| M2.08 Ctrl Mode | Control mode | M2.20 Tr | Rotor time constant |
| M2.10 Pole Num | Pole number | M2.25 V/F Patt | V/F pattern |
| M2.11 Rate Slip | Rated slip | M2.26 Fwd Boost | Forward torque boost |
| M2.12 Rated Curr | Rated current | M2.27 Rev Boost | Reverse torque boost |
| M2.13 Noload Curr | No-load current | M2.28 Stall Lev | Stall prevention level |
| M2.14 Rated Volt | Motor rated voltage | M2.29 ETH 1min | Motor heat protection <br> 1min rating |
| M2.15 Efficiency | Motor efficiency | M2.30 ETH Cont | Motor heat protection <br> continuous rating |

## Example-2nd Motor Operation

Use the 2nd motor operation when switching operation between a 7.5 kW motor and a secondary 3.7 kW motor connected to terminal P3. Refer to the following settings.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In | 67 | Terminal P3 <br> configuration | P3 Define | 26 | 2nd Motor | - | - |
| M2 | 06 | Motor capacity | M2-Capacity | - | 3.7kW | - | - |
|  | 08 | Control mode | M2-Ctrl Mode | 0 | V/F | - | - |



## Leaming Advanced Features

### 5.19 Supply Power Transition

Supply power transition is used to switch the power source for the motor connected to the inverter from the inverter output power to the main supply power source (commercial power source), or vice versa.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In | $\begin{aligned} & \hline 65-71 \\ & \text { in IP20 } \\ & \text { models, } \\ & 65-69 \\ & \text { in IP66 } \\ & \text { models } \end{aligned}$ | Pxterminal configuration | Px Define(Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | 16 | Exchange | - | - |
| OU | 31 | Multi-function relay1 items | Relay 1 | 17 | Inverter Line | - |  |
|  | 33 | Multi-function output1 items | Q1 Define | 18 | Comm Line | - | - |

## Supply Power Transition Setting Details



## ENERTRONICA

SANTERNO

### 5.20 Cooling Fan Control

This function turns the inverter's heat-sink cooling fan on and off. It is used in situations where the load stops and starts frequently, or noise free environment is required. The correct use of cooling fan control can extend the cooling fan's life.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ad | 64 | Cooling fan control | FAN Control | 0 | During Run | $0-2$ |

## Cooling Fan Control Detail Settings

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Ad. 64 Fan Control | Settings |  | Description |
|  | 0 | During Run | Cooling fan runs when the power is supplied to the inverter and the operation command is on. The cooling fan stops when the power is supplied to the inverter and the operation command is off. When the inverter heat sink temperature is higher than its set value, the cooling fan operates automatically regardless of its operation status. |
|  | 1 | Always On | Cooling fan runs constantly if the power is supplied to the inverter. |
|  | 2 | Temp Control | With power connected and the run operation command on, if the setting is in Temp Control, the cooling fan will not operate unless the temperature in the heat sink reaches the set temperature. |

## Note

Despite setting Ad. 64 to 0(During Run), if the heat sink temperature reaches a set level by current input harmonic wave or noise, the cooling fan may run as a protection function.

## Leaming Advanced Features

### 5.21 Input Power Frequency and Voltage Settings

Select the frequency for inverter input power. If the frequency changes from 50 Hz to 60 Hz , all other frequency (or RPM) settings including the maximum frequency, base frequency etc., will change to 60 Hz . Likewise, changing the input power frequency setting from 50 Hz to 60 Hz will change all related function item settings from 50 Hz to 60 Hz .

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bA | 10 | Input power frequency | $60 / 50 \mathrm{~Hz} \mathrm{Sel}$ | 1 | 50 Hz | $0-1$ |

Set Inverter input power voltage at bA.19. Low voltage fault trip level changes automatically to the set voltage standard.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bA | 19 | Input power voltage | AC Input Volt | 2 S/T | 230 | $170-240$ |
|  |  | 4 T |  | $320-480$ | V |  |

### 5.22 Read, Write, and Save Parameters

Use read, write and save function parameters on the inverter to copy parameters from the inverter to the keypad or from the keypad to the inverter.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* | 46 | Parameter read | Parameter Read | 1 | Yes | - | - |
|  | 47 | Parameter write | ParameterWrite | 1 | Yes | - | - |
|  | 48 | Parameter save | Parameter Save | 1 | Yes | - | - |

*Available on LCD keypad only.
Read, Write, and Save Parameter Setting Details

| Code | Description |
| :--- | :--- |
| CNF-46 Parameter <br> Read | Copies saved parameters from the inverter to the keypad. Saved <br> parameters on the keypad will be deleted and replaced with copied <br> parameters. |
| CNF-47 Parameter | Copies saved parameters from the keypad to the inverter. Saved <br> parameters on the inverter will be deleted and replaced with copied <br> parameters. If an error occurs during parameter writing, previous saved <br> data will be used. If there is no saved data on the Keypad, ‘EEP Rom <br> Write |


| Code | Description |
| :--- | :--- |
| CNF-48 Parameter | As parameters set during communication transmission are saved to <br> RAM, the setting values will be lost if the power goes off and on. When <br> setting parameters during communication transmission, select 1 (Yes) <br> from CNF-48 code to save the set parameter. |

### 5.23 Parameter Initialization

User changes to parameters can be initialized (reset) to factory default settings on all or selected groups. However, during a fault trip situation or operation, parameters cannot be initialized.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr* $^{*}$ | 93 | Parameter <br> initialization | - | 0 | No | $0-16$ |  |
| CNF** | 40 | Parameter <br> initialization | Parameter Init | 0 | No | $0-16$ |  |

* For keypad
** For LCD keypad


## Parameter Initialization Setting Details

| Code | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| dr.93, CNF-40 Parameter Init | Setting |  | LCD Display | Function |
|  | 0 | No | No | - |
|  | 1 | Initialize all groups | All Grp | Initialize all data. Select 1(All Grp) and press [PROG/ENT] key to start initialization. On completion, $0(\mathrm{No})$ will be displayed. |
|  | 2 | Initialize dr group | DRV Grp | Initialize data by groups. |
|  | 3 | Initialize bA group | BAS Grp | Select initialize group and |
|  | 4 | Initialize Ad group | ADV Grp | press [PROG/ENT] key to |
|  | 5 | Initialize Cn group | CON Grp | start initialization. On |
|  | 6 | Initialize In group | IN Grp | completion, 0 (No) will be |
|  | 7 | Initialize OU group | OUT Grp | displayed. |
|  | 8 | Initialize CM group | COM Grp |  |
|  | 9 | Initialize AP group | APP Grp |  |
|  | 12 | Initialize Prgroup | PRT Grp |  |
|  | 13 | Initialize M2 group | M2 Grp |  |
|  | 16 | Initialize OperationGroup | SPS Grp |  |

## Leaming Advanced Features

### 5.24 Parameter View Lock

Use parameter view lock to hide parameters after registering and entering a user password.

| Group | Code | Name | LCD Display | Parameter Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* | 50 | Parameter view <br> lock | View Lock Set | Unlocked | $0-9999$ |  |
|  | 51 | Parameter view <br> lock password | View Lock Pw | Password | $0-9999$ |  |

* Available on LCD keypad only.


## Parameter View Lock Setting Details

| Code | Description |  |
| :---: | :---: | :---: |
| CNF-51 View Lock Pw | Register a password to allow access to parameter view lock. Follow the steps below to register a password. |  |
|  | No | Procedure |
|  | 1 | [PROG/ENT] key on CNF-51 code will show the previous password input window. If registration is made for the first time, enter 0. It is the factory default. |
|  | 2 | If a password had been set, enter the saved password. |
|  | 3 | If the entered password matches the saved password, a new window prompting the user to enter a new password will be displayed (the process will not progress to the next stage until the user enters a valid password). |
|  | 4 | Register a new password. |
|  | 5 | After registration, code CNF-51 will be displayed. |
| CNF-50 View Lock Set | To enable parameter view lock, enter a registered password. [Locked] sign will be displayed on the screen to indicate that parameter view lock is enabled. To disable parameter view lock, re-enter the password. The [locked] sign will disappear. |  |

### 5.25 Parameter Lock

Use parameter lock to prevent unauthorized modification of parameter settings. To enable parameter lock, register and enter a user password first.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dr | 94 | Password registration | - | - | $0-9999$ | - |
|  | 95 | Parameter lock <br> password | - | - | $0-9999$ | - |
| CNF* | 52 | Parameter lock | Key Lock Set | Unlocked | $0-9999$ | - |
|  | 53 | Parameter lock <br> password | Key Lock PW | Password | $0-9999$ | - |

*Available on LCD keypad only.

## Parameter Lock Setting Details

| Code | Description |  |
| :---: | :---: | :---: |
| CNF-53 Key Lock Pw | Register a password to prohibit parameter modifications. Follow the procedures below to register a password. |  |
|  | No | Procedures |
|  | 1 | Press the [PROG/ENT] key on CNF-53 code and the saved password input window will be displayed. If password registration is being made for the first time, enter 0 . It is the factory default. |
|  | 2 | If a saved password has been set, enter the saved password. |
|  | 3 | If the entered password matches the saved password, then a new window to enter a new password will be displayed. (The process will not move to next stage until the user enters a valid password). |
|  | 4 | Register a new password. |
|  | 5 | After registration, Code CNF-51 will be displayed. |
| CNF-52 Key Lock Set | To en will b Once allow prohi | le parameter lock, enter the registered password. [Locked] sign displayed on the screen to indicate that prohibition is enabled. nabled, Pressing the [PROG/ENT] key on function code will not he display edit mode to run. To disable parameter modification ition, re-enter the password. The [Locked] sign will disapear. |

## Caution

If parameter view lock and parameter lock functions are enabled, no inverter operation related function changes can be made. It is very important that you memorize the password.

### 5.26 Changed Parameter Display

This feature displays all the parameters that are different from the factory defaults. Use this feature to track changed parameters.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* | 41 | Changed parameter <br> display | Changed Para | 0 | View All | - | - |

* Available on LCD keypad only.


## Changed Parameter Display Setting Details

| Code | Description |  |  |
| :--- | :--- | :--- | :--- |
| CNF-41 Changed <br> Para | Seting |  | Function |
|  | 0 | View All | Display all parameters |
|  | 1 | View Changed | Display changed parameters only |

### 5.27 User Group

Create a user defined group and register user-selected parameters from the existing function groups. The user group can carry up to a maximum of 64 parameter registrations.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* | 42 | Multi-function key <br> settings | Multi Key Sel | 3 | UserGrp <br> SelKey | - | - |
|  | 45 | Delete all user registered <br> codes | UserGrp <br> AllDel | 0 | No | - | - |

[^6]
## User Group Setting Details

| Code |  |  |
| :---: | :---: | :---: |
| CNF-42 Multi-Key Sel | Select 3(UserGrp SelKey) from the multi-function key setting options. If user group parameters are not registered, setting the multi-function key to the user group select key (UserGrp SelKey) will not display user group (USR Grp) item on the Keypad. |  |
|  | No | Procedure |
|  | 1 | Set CNF- 42 to 3(UserGrp SelKey).A $\mathbb{U}$ icon will be displayed at the top of the LCD display. |
|  | 2 | In the parameter mode (PAR Mode), move to the parameter you need to register and press the [MULTI] key. For example, if the [MULTI] key is pressed in the frequency reference in DRV 01 (Cmd Frequency), the screen below will be displayed. <br> (1) Group name and code number of the parameter (2) Name of the parameter <br> (3) Code number to be used in the user group. Pressing the [PROG/ENT] key on the code number (40 Code) will register DRV-01 as code 40 in the user group. <br> (4) Existing parameter registered as the user group code 40 (5) Setting range of the user group code. Entering 0 cancels the settings. |
|  | 3 | Set a code number (3) to use to register the parameter in the user group. Select code number and press [PROG/ENT] key. |
|  | 4 | Changing the value in (3) will also change the value in 4. If no code is registered, 'Empty Code' will be displayed. Entering 0 cancels the settings. |
|  | 5 | The registered parameters are listed in the user group in U\&M mode. You can register one parameter multiple times if necessary. For example, a parameter can be registered as code 2, code 11, and more in the user group. |

## Leaming Advanced Features

| Code | Description |  |
| :---: | :---: | :---: |
|  | Follow the procedures below to delete parameters in the user group. |  |
|  | No. | Settings |
|  | 1 | Set CNF- 42 to 3(UserGrp SelKey).A U icon will be displayed at the top of the LCD display. |
|  | 2 | In the USR group in U\&M mode, move the cursor to the code that is to be deleted. |
|  | 3 | Press the [MULTI] key. |
|  | 4 | Move to YES on the deletion confirmation screen, and press the [PROG/ENT] key. |
|  | 5 | Deletion completed. |
| CNF-25 UserGrp AllDel | Set to 1 (Yes) to delete all registered parameters in the user group. |  |

### 5.28 Easy Start On

Run Easy Start On to easily setup the basic motor parameters required to operate a motor in a batch. Set CNF-61(Easy Start On) to 1(Yes) to activate the feature, initialize all parameters by setting CNF-40 (Parameter Init) to 1 (All Grp), and restart the inverter to activate Easy Start On.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* | 61 | Parameter easy start <br> settings | Easy Start On | 1 | Yes | - | - |

*Available on LCD keypad only.

## Easy Start On Setting Details

| Code | Description |  |
| :---: | :---: | :---: |
| CNF-61 Easy Start On | Follow the procedures listed below to set parameter easy start. |  |
|  | No | Procedures |
|  | 1 | Set CNF-61 (Easy Start On) to 1(Yes). |
|  | 2 | Select 1(All Grp) in CNF-40 (Parameter Init) to initialize all parameters in the inverter. |
|  | 3 | Restarting the inverter will activate the Easy Start On. Set the values in the following screens on the LCD keypad. To escape from the Easy Start On, press the [ESC] key. |


| Code | Description |
| :---: | :---: |
|  | - Start Easy Set: Select Yes. <br> - DRV-14 Motor Capacity: Set motor capacity. <br> - BAS-11 Pole Number: Set motor pole number. <br> - BAS-15 Rated Volt: Set motor rated voltage. <br> - BAS-10 60/50Hz Sel: Set motor rated frequency. <br> - BAS-19 AC Input Volt: Set input voltage. <br> - DRV-06 Cmd Source: Set command source. <br> - DRV-01 Cmd Frequency: Set operation frequency. <br> When the settings are completed, the minimum parameter setting on the motor has been made. The LCD keypay will return to a monitoring display. Now the motor can be operated with the command source set at DRV-06. |

### 5.29 Config(CNF) Mode

The config mode parameters are used to configure the LCD keypad related features.

| Group | Code | Name | LCD Display | Parameter Setting | Setting <br> Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNF* | 2 | LCD brightness/contrast adjustment | LCD Contrast | - | - |  |
|  | 10 | Inverter S/W version | Inv S/W Ver | X.XX | - |  |
|  | 11 | Keypad S/W version | Keypad S/W Ver | X.XX | - | - |
|  | 12 | Keypad title version | KPD Title Ver | X.XX | - | - |
|  | 30-32 | Power slot type | Option-xType | None | - | - |
|  | 44 | Erase trip history | Erase All Trip | No | - | - |
|  | 60 | Add title update | Add Title Up | No | - | - |
|  | 62 | Initialize accumulated electric energy | WH Count Reset | No | - | - |

[^7]
## Leaming Advanced Features

## Config Mode Parameter Setting Details

| Code | Description |
| :--- | :--- |
| CNF-2 LCD contrast | Adjusts LCD brightness/contrast on the LCD keypad. |
| CNF-10 Inv S/W Ver, <br> CNF-11 Keypad S/W Ver | Check OS version in the inverter and on the LCD keypad. |
| CNF-12 KPD title Ver | Checks title version on the LCD keypad. |
| CNF-30-32 Option-x <br> type | Checks type of powerboard installed in 1-3 power slot. |
| CNF-44 Erase all trip | Deletes stored trip history. |
| CNF-60 Add Title Up | When inverter SW version is updated and more code is added, CNF- <br> 60 settings will add, display, and operate the added codes. Set CNF- <br> 60 to 1(Yes) and disconnect the LCD keypad from the inverter. <br> Reconnecting the LCD keypad to the inverter updates titles. |
| CNF-62 WH Count Reset | Initialize accumulated electric energy consumption count. |

### 5.30 Timer Settings

Set a multi-function input terminal to a timer and On/Off control the multi-function output and relay according to the timer settings.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting <br> Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In | $\begin{array}{\|l\|} \hline 65-71 \\ \text { in IP20 } \\ \text { models, } \\ 65-69 \\ \text { in IP66 } \\ \text { models } \end{array}$ | Px terminal configuration | Px Define(Px: P1P7 in IP20 models, P1-P5 in IP66 models) | 38 | Timer In | - | - |
| OU | 31 | Multi-function relay1 | Relay 1 | 28 | Timer Out | - | - |
|  | 33 | Multi-function output1 | Q1 Define |  |  |  |  |
|  | 55 | Timer on delay | Timer on delay | 3.00 |  | 0.00-100 | sec |
|  | 56 | Timer off delay | Timer off delay | 1.00 |  | 0.00-100 | sec |

## SANTTERNO

Timer Setting Details

| Code | Description |
| :--- | :--- |
| In.65-71 (P1-P7 in | Choose one of the multi-function input terminals and change it to a timer |
| IP20 models), |  |
| In.65-69 (P1-P5 in <br> IP66 models) | Cerminal by setting it to 38 (Timer In). <br> Px Define |
| OU.31 Relay1, | Set multi-function output terminal or relay to be used as a timer to 28 <br> (Timer out). |
| OU.33 Q1 Define | OU.55 TimerOn <br> Delay, <br> OU.56 TimerOff |
| Input a signal (On) to the timer terminal to operate a timer output (Timer <br> out) after the time set at OU.55 has passed. When the multi-function <br> input terminal is off, multi-function output or relay turns off after the time <br> set at OU.56. |  |



### 5.31 Brake Control

Brake control is used to control the On/Off operation of electronic brake load system.

| Group | Code | Name | LCD Display | Parameter <br> Setting |  | Setting Range |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Unit

## Leaming Advanced Features

When brake control is activated, DC braking (Ad.12) at inverter start and dwell operation (Ad.20-23) do not operate.

- Brake release sequence: During motor stop state, if an operation command is entered, the inverter accelerates up to brake release frequency (Ad.44-45) in forward or in reverse direction. After reaching brake release frequency, if motor current reaches brake release current (BR Rls Curr), the output relay or multi function output terminal for brake control sends a release signal. Once the signal has been sent, acceleration will begin after maintaining frequency for brake release delay time (BR RIs Dly).
- Brake engage sequence: If a stop command is sent during operation, the motor decelerates. Once the output frequency reaches brake engage frequency (BR Eng Fr), the motor stops deceleration and sends out a brake engage signal to a preset output terminal. Frequency is maintained for the brake engage delay time (BR Eng Dly) and will become 0 afterwards. If DC braking time (Ad.15) and DC braking resistance (Ad.16) are set, inverter output is blocked after DC braking. For DC braking, refer to 4.17.2 Stop After DC Braking on page 157.



## ENERTRONICA

SANTERNO

### 5.32 Multi-Function Output On/Off Control

Set reference values (on/off level) for analog input and control output relay or multifunction output terminal on/off status accordingly.

| Group | Code Name |  | LCD Display |  | rameter tting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad | 66 | Output terminal on/off control mode | On/Off Ctrl Src | 1 | V1 | - | - |
|  | 67 | Output terminal on level | On-C Level | 90.00 |  | Output terminal off level100.00\% | \% |
|  | 68 | Output terminal off level | Off-C Level | 10.00 |  | 0.00-Output terminal on level | \% |
| OU | 31 | Multi-function relay1 item | Relay 1 | 34 | On/Off | - | - |
|  | 33 | Multi-function output1 item | Q1 Define |  |  |  |  |

## Multi-function Output On/Off Control Setting Details

| Code | Description |
| :--- | :--- |
| Ad. 66 On/Off Ctrl Src | Select analog input On/Off control. |
| Ad. 67 On-C Level, | Set On/Off level at the output terminal. |
| Ad. 68 Off-C Level |  |
| Analog input |  |

## Leaming Advanced Features

### 5.33 Press Regeneration Prevention

Press regeneration prevention is used during press operations to prevent braking during the regeneration process. If motor regeneration occurs during a press operation, motor operation speed automatically goes up to avoid the regeneration zone.

| Grou p | Cod e | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ad | 74 | Select press regeneration prevention for press | RegenAvd Sel | 0 No | No | 0-1 | - |
|  | 75 | Press regeneration prevention operation voltage level | RegenAvd Level | 350 V |  | 2S/T: 300-400V | V |
|  |  |  |  | 700V |  | 4T:600-800V |  |
|  | 76 | Press regeneration prevention compensation frequency limit | CompFreq Limit | 1.00(Hz) |  | 0.00-10.00Hz | Hz |
|  | 77 | Press regeneration prevention P gain | RegenAvd Pgain | 50.0(\%) |  | 0.0-100.0\% | \% |
|  | 78 | Press regeneration prevention I gain | RegenAvd Igain | 500(ms) |  | 20-30000ms | ms |

Press Regeneration Prevention Setting Details

| Code | Description |
| :--- | :--- |
| Ad. 74 RegenAvd Sel | Frequent regeneration voltage from a press load during constant speed <br> motor operation may force excessive work on the brake unit which may <br> damage or shorten the brake lifee. To prevent this situation, select Ad..74 <br> (RegenAvd Sel) to control DC link voltage and disable the brake unit <br> operation. |
| Ad.75 RegenAvd | Set brake operation prevention level voltage when the DC link voltage <br> goes up due to regeneration. |
| Level | Sd. <br> Simet alternative frempaency width that can replace actual operation <br> frequency during regeneration prevention. |
| Ad. 77 RegenAvd <br> Pgain, Ad.78 <br> RegenAvd Igain | To prevent regeneration zone, set P gain/I gain in the DC link voltage <br> supress PI controller. |



## Note

Press regeneration prevention does not operate during accelerations or decelerations, but it only operates during constant speed motor operation. When regeneration prevention is activated, output frequency may change within the range set at Ad. 76 (CompFreq Limit).

### 5.34 Analog Output

An analog output terminal provides output of 0-10V voltage, 4-20mA current, or 0-32kHz pulse.

### 5.34.1 Voltage and Current Analog Output

An output size can be adjusted by selecting an output option at AO(Analog Output) terminal. Set the analog voltage/current output terminal setting switch (SW3) to change the output type (voltage/current).

## A01: 0-10 V Voltage / 4-20 mA Current Output

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range | Unit |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| OU | 01 | Analog output1 | AO1 Mode | 0 | Frequency | $0-15$ |
|  | 02 | Analog output1 gain | AO1 Gain | 100.0 | $-1000.0-1000.0$ | $\%$ |
|  | 03 | Analog output1 bias | AO1 Bias | 0.0 | $-100.0-100.0$ | $\%$ |
|  | 04 | Analog output1 filter | AO1 Filter | 5 | $0-10000$ | ms |
|  | 05 | Analog constant output1 | AO1 Const $\%$ | 0.0 | $0.0-100.0$ | $\%$ |
|  | 06 | Analog output1 monitor | AO1 Monitor | 0.0 | $0.0-1000.0$ | $\%$ |

## Leaming Advanced Features

## A02: 0-10 V Current output [0034 model only]

| Group | Code | Name | LCD Display | Param | eter Setting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OU | 07 | Analog output2 | A02 Mode | 0 | Frequency | 0-15 | - |
|  | 08 | Analog output2 gain | A02 Gain | 100.0 |  | -1000.0-1000.0 | \% |
|  | 09 | Analog output2 bias | AO2 Bias | 0.0 |  | -100.0-100.0 | \% |
|  | 10 | Analog output2 filter | AO2 Filter | 5 |  | 0-10000 | ms |
|  | 11 | Analog constant output2 | AO2 Const\% | 0.0 |  | 0.0-100.0 | \% |
|  | 12 | Analog output2 monitor | AO2 Monitor | 0.0 |  | 0.0-1000.0 | \% |

## Voltage and Current Analog Output Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
|  | Select a constant value for output. The following example for output voltage setting. |  |  |
| $\begin{aligned} & \text { OU. } 01 \\ & \text { AO1 } \\ & \text { Mode } \end{aligned}$ | Setting |  | Function |
|  | 0 | Frequency | Outputs operation frequency as a standard. 10V output is made from the frequency set at dr.20(Max Freq) |
|  | 1 | Output Current | 10 V output is made from $200 \%$ of inverter rated current (heavy load). |
|  | 2 | Output Voltage | Sets the outputs based on the inverter output voltage. 10 V output is made from a set voltage in bA. 15 (Rated V). <br> If 0 V is set in bA. $15,2 \mathrm{~S} / \mathrm{T}$ and 4 T models output 10 V based on the actual input voltages ( 240 V and 480 V respectively). |
|  | 3 | DC Link Volt | Outputs inverter DC link voltage as a standard. Outputs 10 V when the DC link voltage is 410 Vdc for $2 \mathrm{~S} / \mathrm{T}$ models, and 820 Vdc for 4 T models. |
|  | 4 | Torque | Outputs the generated torque as a standard. Outputs 10 V at $250 \%$ of motor rated torque. |
|  | 5 | Ouput Power | Monitors output wattage. $200 \%$ of rated output is the maximum display voltage (10V). |
|  | 6 | Idse | Outputs the maximum voltage at $200 \%$ of no load current. |
|  | 7 | Iqse | Outputs the maximum voltage at $250 \%$ of rated torque current rated tor que current $=\sqrt{\text { rated current }{ }^{2}-\text { no load current }{ }^{2}}$ |
|  | 8 | Target Freq | Outputs set frequency as a standard. Outputs 10 V at the maximum frequency (dr.20). |
|  | 9 | Ramp Freq | Outputs frequency calculated with Acc/Dec function as a standard. May vary with actual output frequency. Outputs 10V. |
|  | 12 | PID Ref Value | Outputs command value of a PID controller as a standard. Outputs approximately 6.6 V at $100 \%$. |
|  | 13 | PID Fdk Value | Outputs feedback volume of a PID controller as a standard. Outputs approximately 6.6 V at $100 \%$. |
|  | 14 | PID | Outputs output value of a PID controller as a standard. Outputs |



## Leaming Advanced Features

### 5.34.2 Analog Pulse Output

Output item selection and pulse size adjustment can be made for the TO (Pulse Output) terminal.

| Group | Code | Name | LCD Display |  | meter <br> ing | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OU | 33 | Multi-function output 1 | Q1 define | 38 | TO | 0-38 |  |
|  | 61 | Pulse output setting | TO Mode | 0 | Frequency | 0-15 |  |
|  | 62 | Pulse output gain | TO Gain | 100 |  | $\begin{aligned} & -1000.0- \\ & 1000.0 \end{aligned}$ | \% |
|  | 63 | Pulse output bias | TO Bias | 0.0 |  | -100.0-100.0 | \% |
|  | 64 | Pulse output filter | TO Filter | 5 |  | 0-10000 | ms |
|  | 65 | Pulse output constant output2 | TO Const \% | 0.0 |  | 0.0-100.0 | \% |
|  | 66 | Pulse output monitor | TO Monitor | 0.0 |  | 0.0-1000.0 | \% |

## Analog Pulse Output Setting Details



## ENERTRONICA <br> SANTERNO



## Leaming Advanced Features

## Note

## OU.08 A02 Gain and OU.09 A02 Bias Tuning Mode on 4-20mA output

1 Set OU. 07 (AO2 Mode) to constant, and set OU. 11 (AO2 Const \%) to $0.0 \%$.
2 Set OU. 09 (AO2 Bias) to 20.0\% and then check current output. 4mA output should be displayed.
3 If the value is less than 4mA, gradually increase OU. 09 (AO2 Bias) until 4 mA is measured. If the value is more than 4mA, gradually decrease OU. 09 (AO2 Bias) until 4 mA is measured.

4 Set OU. 11 AO2 Const \% to 100.0\%
Set OU. 08 (AO2 Gain) to $80.0 \%$ and measure current output at 20 mA . If the value is less than 20 mA , gradually increase OU. 08 (AO2 Gain) until 20 mA is measured. If the value is more than 20 mA , gradually decrease OU. 08 (AO2 Gain) until 20 mA is measured.

The functions for each code are identical to the descriptions for the $0-10 \mathrm{~V}$ voltage outputs with an output range $4-20 \mathrm{~mA}$.

### 5.35 Digital Output

### 5.35.1 Multi-function Output Terminal and Relay Settings

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OU | 30 | Fault output item | Trip Out Mode | 010* |  | - | bit |
|  | 31 | Multi-function relay1 setting | Relay 1 | 29 | Trip | - | - |
|  | 33 | Multi-function output1 setting | Q1 Define | 14 | Run | - | - |
|  | 41 | Multi-function output monitor | DO Status | - |  | 00-11 | bit |
|  | 57 | Detection frequency | FDT Frequency | 30.00 |  | 0.00- |  |
|  | 58 | Detection frequency band | FDT Band | 10.00 |  | Maximum frequency | Hz |
| In | 65-71 in IP20 models, 65-69 in IP66 models | Px terminal configuration | Px Define(Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | 16 | Exchange | - | - |

Multi-function Output Terminal and Relay Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| OU. 31 Relay1 | Set relay (Relay 1) output options. |  |  |
| OU. 33 Q1 Define | Select output options for multi-function output terminal (Q1). Q1 is open collector TR output. |  |  |
| OU. 41 DO Status | Set output terminal and relay functions according to OU. 57 FDT (Frequency), OU. 58 (FDT Band) settings and fault trip conditions. |  |  |
|  | Setting |  | Function |
|  | 0 | None | No output signal. |
|  | 1 | FDT-1 | Detects inverter output frequency reaching the user set frequency. Outputs a signal when the absolute value (set frequency-output frequency) < detected frequency width/2. <br> When detected frequency width is 10 Hz , FDT-1 output is as shown in the graph below. |
|  |  |  |  |
|  | 2 | FDT-2 | Outputs a signal when the user set frequency and detected frequency (FDT Frequency) are equal, and fulfills FDT-1 condition at the same time. <br> [Absolute value (set frequency-detected frequency) <detected frequency width/2]\&[FDT-1] <br> Detected frequency width is 10 Hz . When the detected frequency is set to 30 Hz , FDT-2 output is as shown in the graph below. |

Leaming Advanced Features
$\left.\begin{array}{|l|l|l|l}\hline 3 & \text { FDT-3 } & \begin{array}{l}\text { Outputs a signal when the Absolute value (output } \\ \text { frequency-operation frequency) < detected } \\ \text { frequency width/2. }\end{array} \\ \text { Detected frequency width is 10Hz. When detected } \\ \text { frequency is set to 30Hz, FDT-3 output is as shown } \\ \text { in the graph below. }\end{array}\right\}$

|  | 10 | Over voltage | Outputs a signal when the inverter DC link voltage rises above the protective operation voltage. |
| :---: | :---: | :---: | :---: |
|  | 11 | Low Voltage | Outputs a signal when the inverter DC link voltage drops below the low voltage protective level. |
|  | 12 | Over Heat | Outputs signal when the inverter overheats. |
|  | 13 | Lost command | Outputs a signal when there is a loss of analog input terminal and RS-485 communication command at the terminal block. <br> Outputs a signal when communication power and expansion an I/O power card is installed, and also outputs a signal when losing analog input and communication power commands. |
|  | 14 | RUN | Outputs a signal when operation command is entered and the inverter outputs voltage. <br> No signal output during DC braking. |
|  | 15 | Stop | Outputs a signal at operation command off, and when there is no inverter output voltage. |
|  | 16 | Steady | Outputs a signal in steady operation. |
|  | 17 | Inverter line | Outputs a signal while the motor is driven by the inverter line. |
|  | 18 | Comm line | Outputs a signal while the motor is driven by a commercial power source. For details, refer to 5.19 Supply Power Transition on page 243. |
|  | 19 | Speed search | Outputs a signal during inverter speed search operation. <br> For details, refer to 5.15 Speed Search Operation on page 234. |
|  | 22 | Ready | Outputs signal when the inverter is in stand by operation and ready to receive an external operation command. |
|  | 28 | Timer Out | A timer function to operate terminal output after a certain time by using multi-function terminal block input. For more details, refer to 5.30 Timer Settings on page 253. |
|  | 29 | Trip | Outputs a signal after a fault trip Refer to 5.32 Multi-Function Output On/Off Control on page 256. |

## Leaming Advanced Features

|  | 31 | DB Warn \%ED | Refer to 6.2.5 Dynamic Braking (DB) Resistor Configuration on page 286. |
| :---: | :---: | :---: | :---: |
|  | 34 | On/Off Control | Outputs a signal using an analog input value as a standard. <br> Refer to 5.32 Multi-Function Output On/Off Control on page 256 . |
|  | 35 | BR Control | Outputs a brake release signal. Refer to 5.31 Brake Controlon page 254. |

### 5.35.2 Fault Trip Output using Multi-Function Output Terminal and Relay

The inverter can output fault trip state using multi-function output terminal (Q1) and relay (Relay 1).

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OU | 30 | Fault trip output mode | Trip Out Mode | 010 |  | - | bit |
|  | 31 | Multi-function relay1 | Relay 1 | 29 | Trip | - | - |
|  | 33 | Multi-function output1 | Q1 Define | 14 | Run | - | - |
|  | 53 | Fault trip output on delay | TripOut OnDly | 0.00 |  | 0.00-100.00 | sec |
|  | 54 | Fault trip output off delay | TripOut OffDly | 0.00 |  | 0.00-100.00 | sec |

Fault Trip Output by Multi-function Output Terminal and Relay - Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| OU. 30 Trip Out Mode | Fault trip relay operates based on the fault trip output settings. |  |  |
|  | Item | bit on | bit off |
|  | Keypad | 8 | 1 |
|  | LCD keypad | $\square$ | $\square$ |
|  | Select fault trip output terminal/relay and select 29(Trip Mode) at codes OU. 31, 33. When a fault trip occurs in the inverter, the relevant terminal and relay will operate. Depending on the fault trip type, terminal and relay operation can be configured as shown in the table below. |  |  |
|  | Setting |  | Function |
|  | bit3 bit2 | bit1 |  |
|  |  | $\checkmark$ | Operates when low voltage fault trips occur |
|  | $\checkmark$ |  | Operates when fault trips other than low voltage occur |
|  | $\checkmark$ |  | Operates when auto restart fails (Pr. 08-09) |
| OU. 31 Relay1 | Set relay output (Relay 1). |  |  |
| OU.33 Q1 Define | Select output for multi-function output terminal (Q1). Q1 is open collector TR output. |  |  |
| OU.53TripOut On Dly, <br> OU. 54 TripOut OffDly | If a fault trip occurs, trip relay or multi-function output operates after the time delay set in OU.53. Terminal is off with the input initialized after the time delay set in OU.53. |  |  |

### 5.35.3 Multi-function Output Terminal Delay Time Settings

Set on-delay and off-delay times separately to control the output terminal and relay operation times. The delay time set at codes OU.50-51 applies to multi-function output terminal (Q1) and relay (Relay 1), except when the multi-function output function is in fault trip mode.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OU | 50 | Multi-function output <br> On delay | DO On Delay | 0.00 | $0.00-100.00$ | s |
|  | 51 | Multi-function output <br> Off delay | DO Off Delay | 0.00 | $0.00-100.00$ | s |
|  | 52 | Select multi-function <br> output terminal | DO NC/NO Sel | $00^{*}$ | $00-11$ | bit |

[^8]
## Leaming Advanced Features

Output Terminal Delay Time Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| OU. 52 DO NC/NO Sel | Select terminal type for relay and multi-function output terminal. An additional three terminal type selection bits at the terminal block will be added when an expansion I/O is added. By setting the relevant bit to 0 , it will operate A terminal (Normally Open), and setting it to 1 will operate B terminal (Normally Closed). Shown below in the table are Relay 1 and Q1 settings starting from the right bit. |  |  |
|  | Item | bit on | bit off |
|  | Keypad | 11 | 5 |
|  | LCD keypad | $\square$ | $\square$ |



### 5.36 Keypad Language Settings

The language to be displayed on the LCD keypad is English only.

| Group | Code | Name | LCD Display | Parameter <br> Setting |  | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* $^{*}$ | 01 | Select keypad <br> language | Language Sel | 0 | English | 0 : English | - |
| * | Availableon LCD keypad |  |  |  |  |  |  |

Available on LCD keypad only.

### 5.37 Operation State Monitor

The inverter's operation condition can be monitored using the LCD keypad. If the monitoring option is selected in config (CNF) mode, a maximum of four items can be monitored simultaneously. Monitoring mode displays three different items on the LCD keypad, but only one item can be displayed in the status window at a time.

| Group | Code | Name | LCD Display |  | arameter tting | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNF* | 20 | Display item condition display window | Anytime Para | 0 | Frequency | - | - |
|  | 21 | Monitor mode display 1 | Monitor Line1 | 0 | Frequency |  | Hz |
|  | 22 | Monitor mode display 2 | Monitor Line2 | 2 | Output Current |  | A |
|  | 23 | Monitor mode display 3 | Monitor Line3 | 3 | Output Voltage |  | V |
|  | 24 | Monitor mode initialize | Mon Mode Init | 0 | No | - | - |

*Available on LCD keypad only.

## Operation State Monitor Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| CNF-20 AnyTime Para | Select items to display on the top-right side of the LCD keypad screen. Choose the parameter settings based on the information to be displayed. Codes CNF-20-23 share the same setting options as listed in the table below. |  |  |
|  | Setting |  | Function |
|  | 0 | Frequency | On stop, displays the set frequency. During operation, displays the actual output frequency (Hz). |
|  | 1 | Speed | On stop, displays the set speed (rpm). During operation, displays the actual operating speed (rpm). |
|  | 2 | Output Current | Displays output current. |
|  | 3 | Output Voltage | Displays output voltage. |
|  | 4 | Output Power | Displays output power. |
|  | 5 | WHour Counter | Displays inverter power consumption. |
|  | 6 | DCLink | Displays DC link voltage within the inverter. |

## Leaming Advanced Features

|  |  | Voltage |  |
| :---: | :---: | :---: | :---: |
|  | 7 | DI Status | Displays input terminal status of the terminal block. Starting from the right, displays P1-P8. |
|  | 8 | DO Status | Displays output terminal status of the terminal block. Starting from the right, Relay1, Relay2, and Q1. |
|  | 9 | V1 Monitor[V] | Displays the input voltage value at terminal V1 (V). |
|  | 10 | V1 Monitor[\%] | Displays input voltage terminal V1 value as a percentage. If $-10 \mathrm{~V}, 0 \mathrm{~V},+10 \mathrm{~V}$ is measured, $-100 \%, 0 \%, 100 \%$ will be displayed. |
|  | 13 | V2 Monitor[V] | Displays input voltage terminal V2 value (V). |
|  | 14 | V2 Monitor[\%] | Displays input voltage terminal V2 value as a percentage. |
|  | 15 | $\begin{array}{\|l\|} \hline \text { I2 } \\ \text { Monitor[mA] } \\ \hline \end{array}$ | Displays input current terminal I2 value (A). |
|  | 16 | I2 Monitor[\%] | Displays input current terminal I2 value as a percentage. |
|  | 17 | PID Output | Displays output of PID controller. |
|  | 18 | PID Ref Value | Displays reference value of PID controller. |
|  | 19 | PID Fdb Value | Displays feedback volume of PID controller. |
|  | 20 | Torque | If the torque reference command mode (DRV-08) is set to a value other than keypad (0 or 1), the torque reference value is displayed. |
|  | 21 | Torque Limit | If torque limit setting (Cn.53) is set to a value other than keypad (0 or 1), the torque limit value is displayed. |
|  | 23 | Spd Limit | If the speed limit setting (Cn.62) on torque control mode is set to a value other than keypad (0 or 1), the speed limit setting is displayed. |

CNF-21-23 Monitor LineX

CNF-24 Mon Mode Init
Select the items to be displayed in monitor mode. Monitor mode is the first displayed mode when the inverter is powered on. A total of three items, from monitor line-1 to monitor line- 3, can be displayed simultaneously.
Selecting 1(Yes) initializes CNF-20-23.

## ENERTRONICA

SANTERNO

## Note

## Inverter power consumption

Values are calculated using voltage and current. Electric power is calculated every second and the results are accumulated. Setting CNF-62 (WH Count Reset) value to 1(Yes) will reset cumulated electric energy consumption. Power consumption is displayed as shown below:

- Less than 1,000 kW: Units are in kW, displayed in 999.9 kW format.
- 1-99 MW: Units are in MW, displayed in 99.99 MWh format.
- 100-999 MW: Units are in MW, displayed in 999.9 MWh format.
- More than 1,000 MW: Units are in MW, displayed in 9,999 MWh format and can be displayed up to 65,535 MW. (Values exceeding 65,535MW will reset the value to 0 , and units will return to kW . It will be displayed in 999.9 kW format).


### 5.38 Operation Time Monitor

Monitors inverter and fan operation time.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* $^{*} 70$ | 70 | Inverter operation <br> accumulated time | On-time | $0 / 00 / 0000: 00$ | - | min |
|  | 71 | Inverter operation <br> accumulated time | Run-time | $0 / 00 / 0000: 00$ | - | min |
|  | Inverter operation <br> accumulated time <br> initialization | Time Reset | 0 | No | $0-1$ | - |
|  | 74 | Cooling fan operation <br> accumulated time | Fan time | $0 / 00 / 0000: 00$ | - | min |
|  | Cooling fan operation <br> accumulated time <br> initialization | Fan Time <br> Reset | 0 | No | $0-1$ | - |

*Available on LCD keypad only.

## Leaming Advanced Features

## Operation Time Monitor Setting Details

| Code | Description |
| :--- | :--- |
| CNF-70 On-time | Displays accumulated power supply time. Information is displayed in <br> [YY/MM/DD Hr: Min (0/00/00 00: 00)] format. |
| CNF-71 Run-time | Displays accumulated time of voltage output by operation command <br> input. Information is displayed in [YY/MM/DD Hr: Min (0/00/00 00:00)] <br> format. |
| CNF-72 Time Reset | Setting 1(Yes) will delete power supply accumulated time (On-time) and <br> operation accumulated time (Run-time) and is displayed as 0/00/00 00:00 <br> format. |
| CNF-74 Fan time | Displays accumulated time of inverter cooling fan operation. Information <br> will be displayed in [YY/MM/DD Hr: Min (0/00/00 00: 00)] format. |
| CNF-75 Fan Time | Setting 1(Yes) will delete cooling fan operation accumulated time(on- <br> time) and operation accumulated time (Run-time) and will display it in <br> $0 / 00 / 00$ 00:00 format. |
| Reset |  |

## 6 Learning Protection Features

Protection features provided by the Sinus H series inverter are categorized into two types: protection from overheating damage to the motor, and protection against the inverter malfunction.

### 6.1 Motor Protection

### 6.1.1 Electronic Thermal Motor Overheating Prevention (ETH)

ETH is a protective function that uses the output current of the inverter without a separate temperature sensor, to predict a rise in motor temperature to protect the motor based on its heat characteristics.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr | 40 | Electronic thermal <br> prevention fault trip <br> selection | ETH Trip Sel | 0 | None | $0-2$ | - |
|  | 41 | Motor cooling fan <br> type | Motor Cooling | 0 | Self-cool | - | - |
|  | 42 | Electronic thermal one <br> minute rating | ETH 1min | 150 | $120-200$ | $\%$ |  |
|  | 43 | Electronic thermal <br> prevention <br> continuous rating | ETH Cont | 120 | $50-150$ | $\%$ |  |

## Electronic Thermal (ETH) Prevention Function Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Pr. 40 ETH Trip Sel | ETH can be selected to provide motor thermal protection. The LCD screen displays "E-Thermal." |  |  |
|  | Setting |  | Function |
|  | 0 | None | The ETH function is not activated. |
|  | 1 | Free-Run | The inverter output is blocked. The motor coasts to a halt (free-run). |
|  | 2 | Dec | The inverter decelerates the motor to a stop. |

## ENERTRONICA

## SANTERNO

## Leaming Protection Features



### 6.1.2 Overload Early Warning and Trip

A warning or fault 'trip' (cutoff) occurs when the motor reaches an overload state, based on the motor's rated current. The amount of current for warnings and trips can be set separately.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 04 | Load level setting | Load Duty | 1 | Heavy Duty | - | - |
|  | 17 | Overload warning selection | OL Warn Select | 1 | Yes | 0-1 | - |
|  | 18 | Overload warning level | OL Warn Level | 150 |  | 30-180 | \% |
|  | 19 | Overload warning time | OL Warn Time | 10.0 |  | 0-30 | S |
|  | 20 | Motion at overload trip | OLTrip Select | 1 | Free-Run | - | - |
|  | 21 | Overload trip level | OLTrip Level | 180 |  | 30-200 | \% |
|  | 22 | Overload trip time | OLTrip Time | 60.0 |  | 0-60.0 | S |
| OU | 31 | Multi-function relay 1 item | Relay 1 | 5 | Over Load | - | - |
|  | 33 | Multi-function output 1 item | Q1 Define |  |  |  |  |

## Overload Early Warning and Trip Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Pr. 04 Load Duty | Select the load level. |  |  |
|  | Setting |  | Function |
|  | 0 | Normal Duty | Used in underloads, like fans and pumps (overload tolerance: $120 \%$ of rated underload current for 1 minute). |
|  | 1 | Heavy Duty | Used in heavy loads, like hoists, cranes, and parking devices (overload tolerance: $150 \%$ of rated heavy load current for 1 minute). |
| Pr. 17 OLWarn Select | If the overload reaches the warning level, the terminal block multi-function output terminal and relay are used to output a warning signal. If 1 (Yes) is selected, it will operate. If 0 (No) is selected, it will not operate. |  |  |
| Pr. 18 OLWarn Level, Pr. 19 OLWarn Time | When the input current to the motor is greater than the overload warning level (OL Warn Level) and continues at that level during the overload warning time (OL Warn Time), the multi-function output (Relay 1, Q1) sends a warning signal. When Over Load is selected at OU. 31 and 33 , the multifunction output terminal or relay outputs a signal. The the signal output does not block the inverter output. |  |  |

Leaming Protection Features

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Pr. 20 OLTrip Select | Select the inverter protective action in the event of an overload fault trip. |  |  |
|  | Setting |  | Function |
|  | 0 | None | No protective action is taken. |
|  | 1 | Free-Run | In the event of an overload fault, inverter output is blocked and the motor will free-run due to inertia. |
|  | 3 | Dec | If a fault trip occurs, the motor decelerates and stops. |
| Pr. 21 OLTrip Level, Pr. 22 OLTrip Time | When the current supplied to the motor is greater than the preset value at the overload trip level (OLTrip Level) and continues to be supplied during the overload trip time (OLTrip Time), the inverter output is either blocked according to the preset mode from Pr. 17 or slows to a stop after deceleration. |  |  |



## Note

Overload warnings warn of an overload before an overload fault trip occurs. The overload warning signal may not work in an overload fault trip situation, if the overload warn level (OL Warn Level) and the overload warn time (OLWarn Time) are set higher than the overload trip level (OLTrip Level) and overload trip time (OLTrip Time).

### 6.1.3 Stall Prevention and Flux Braking

The stall prevention function is a protective function that prevents motor stall caused by overloads. If a motor stall occurs due to an overload, the inverter operation frequency is adjusted automatically. When stall is caused by overload, high currents are induced in the motor may cause motor overheat or damage the motor and interrupt operation of the motor-driven devices.

To protect the motor from overload faults, the inverter output frequency is adjusted automatically, based on the size of load.

## SANTERNO

| Group | Code | Name | LCD Display | Parameter Setting | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 50 | Stall prevention and flux braking | Stall Prevent | 0000* | - | bit |
|  | 51 | Stall frequency 1 | Stall Freq 1 | 50.00 | Start frequencyStall Freq 1 | Hz |
|  | 52 | Stall level 1 | Stall Level 1 | 180 | 30-250 | \% |
|  | 53 | Stall frequency 2 | Stall Freq 2 | 50.00 | Stall Freq 1-Stall Freq 3 | Hz |
|  | 54 | Stall level 2 | Stall Level 2 | 180 | 30-250 | \% |
|  | 55 | Stall frequency 3 | Stall Freq 3 | 50.00 | Stall Freq 2-Stall Freq 4 | Hz |
|  | 56 | Stall level 3 | Stall Level 3 | 180 | 30-250 | \% |
|  | 57 | Stall frequency 4 | Stall Freq 4 | 50.00 | Stall Freq 3Maximum frequency | Hz |
|  | 58 | Stall level 4 | Stall Level 4 | 180 | 30-250 | \% |
| OU | 31 | Multi-function relay 1 item | Relay 1 | 9 Stall | - | - |
|  | 33 | Multi-function output 1 item | Q1 Define |  |  |  |

* The value is displayed on the keypad as


## 会

## Stall Prevention Function and Flux Braking Setting Details

| Code | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Pr. 50 Stall Prevent | Stall prevention can be configured for acceleration, deceleration, or while operating a motor at constant speed. When the top LCD segment is on, the corresponding bit is set. When the bottom LCD segment is on, the corresponding bit is off. |  |  |  |
|  | Item | Bit Status (On) |  | Bit Status (0ff) |
|  | Keypad | $\xrightarrow{81}$ |  | 5 |
|  | LCD keypad | $\square$ |  | $\square$ |
|  | Setting |  |  | Function |
|  | Bit 4 ${ }^{\text {Bit } 3}$ | Bit 2 | Bit 1 |  |
|  |  |  | $\checkmark$ | Stall protection during acceleration |
|  |  | $\checkmark$ |  | Stall protection while operating at a constant speed |
|  | $\checkmark$ |  |  | Stall protection during deceleration |


| Setting |  | Function |
| :--- | :--- | :--- |
| 0001 | Stall <br> protection <br> during <br> acceleration | If inverter output current exceeds the preset stall <br> level (Pr. 52, 54, 56, 58) during acceleration, the <br> motor stops accelerating and starts decelerating. If <br> current level stays above the stall level, the motor <br> decelerates to the start frequency (dr.19). If the <br> current level causes deceleration below the preset <br> level while operating the stall protection function, <br> the motor resumes acceleration. |
| 0010 | Stall <br> protection <br> while <br> operating at <br> constant <br> speed | Similar to stall protection function during <br> acceleration, the output frequency automatically <br> decelerates when the current level exceeds the <br> preset stall level while operating at constant <br> speed. When the load current decelerates below <br> the preset level, it resumes acceleration. |
| 0100 | Stall <br> protection <br> during <br> deceleration | The inverter decelerates and keeps the DC link <br> voltage below a certain level to prevent an over <br> voltage fault trip during deceleration. As a result, <br> deceleration times can be longer than the set time <br> depending on the load. |
| 1000 | Flux braking <br> during <br> deceleration | When using flux braking, deceleration time may be <br> reduced because regenerative energy is expended <br> at the motor. |
| 1100 | Stall <br> protection <br> and <br> braking <br> during <br> deceleration | Stall protection and flux braking operate together <br> during deceleration to achieve the shortest and <br> most stable deceleration performance. |

## SANTTERNO

|  |  |
| :---: | :---: |
| Pr. 51 Stall Freq 1Pr. 58 Stall Level 4 | Additional stall protection levels can be configured for different frequencies, based on the load type. As shown in the graph below, the stall level can be set above the base frequency. The lower and upper limits are set using numbers that correspond in ascending order. For example, the range for Stall Frequency 2 (Stall Freq 2) becomes the lower limit for Stall Frequency 1 (Stall Freq 1) and the upper limit for Stall Frequency 3 (Stall Freq 3). |

## .

SANTERNO

## Leaming Protection Features

## Note

Stall protection and flux braking operate together only during deceleration. Turn on the third and fourth bits of Pr. 50 (Stall Prevention) to achieve the shortest and most stable deceleration performance without triggering an overvoltage fault trip for loads with high inertia and short deceleration times. Do not use this function when frequent deceleration of the load is required, as the motor can overheat and may be damaged easily.

## (1) Caution

- Use caution when decelerating while using stall protection as depending on the load, the deceleration time can take Ionger than the time set. Acceleration stops when stall protection operates during acceleration. This may make the actual acceleration time longer than the preset acceleration time.
- When the motor is operating, Stall Level 1 applies and determines the operation of stall protection.


### 6.2 Inverter and Sequence Protection

### 6.2.1 Open-phase Protection

Open-phase protection is used to prevent overcurrent levels induced at the inverter inputs due to an open-phase within the input power supply. Open-phase output protection is also available. An open-phase at the connection between the motor and the inverter output may cause the motor to stall, due to a lack of torque.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr | 05 | Input/output open- <br> phase protection | Phase Loss Chk | $10^{*}$ | - | bit |
|  | 06 | Open-phase input <br> voltage band | IPO V Band | 40 | $1-100 \mathrm{~V}$ | V |

*The value is displayed on the keypad as


## Input and Output Open-phase Protection Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Pr. } 05 \text { Phase Loss } \\ & \text { Chk, } \\ & \text { Pr. } 06 \text { IPO V Band } \end{aligned}$ | When open-phase protection is operating, input and output configurations are displayed differently. When the top LCD segment is On, the corresponding bit is set to On. When the bottom LCD segment is On, the corresponding bit is set to Off. |  |  |
|  | Item | Bit status (On) | Bit status (Off) |
|  | Keypad | 81 | 80 |
|  | LCD keypad | $\square$ | $\square$ |
|  | Setting |  | Function |
|  | Bit 2 | Bit 1 |  |
|  |  | $\checkmark$ | Output open-phase protection |
|  | $\checkmark$ |  | Input open-phase protection |

### 6.2.2 External Trip Signal

Set one of the multi-function input terminals to 4 (External Trip) to allow the inverter to stop operation when abnormal operating conditions arise.

| Group | Code | Name | LCD Display | Parameter Setting | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In | $\begin{array}{\|l\|} \hline 65-71 \\ \text { in IP20 } \\ \text { models, } \\ 65-69 \\ \text { in IP66 } \\ \text { models } \end{array}$ | Px terminal setting options | PxDefine (Px: P1-P7 in IP20 models, P1-P5 in IP66 models) | 4 External <br> Trip | - | - |
|  | 87 | Multi-function input contact selction | DI NC/NO Sel |  | - | bit |

## Leaming Protection Features

## External Trip Signal Setting Details

| Code | Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In. 87 DI NC/NO Sel | Selects the type of input contact. If the mark of the switch is at the bottom (0), it operates as an A contact (Normally Open). If the mark is at the top (1), it operates as a B contact (Normally Closed). <br> The corresponding terminals for each bit are as follows: |  |  |  |  |  |  |  |  |  |  |  |
|  | Bit | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
|  | Terminal |  |  |  |  | P7 | P6 | P5 | P4 | P3 | P2 | P1 |


| External Trip A terminal On $\square$ |
| :--- |
| External Trip B terminal On $\square$ |


|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Frequency |  |  |  |
|  |  |  |  |
| $\mathrm{P} 4(\mathrm{~A})$ |  |  |  |
| $\mathrm{P5}(\mathrm{~B})$ |  |  |  |
| Run cmd |  |  |  |

### 6.2.3 Inverter Overload Protection

When the inverter input current exceeds the rated current, a protective function is activated to prevent damages to the inverter based on inverse proportional characteristics.

| Group | Code | Name | LCD Display | Parameter Setting | Setting range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OU | 31 | Multi-function relay 1 | Relay 1 | 6 | IOL | - | - |
|  | 33 | Multi-function output <br> 1 | Q1 Define |  |  |  |  |

## Note

A warning signal output can be provided in advance by the multi-function output terminal before the inverter overload protection function (IOLT) operates. When the overcurrent time reaches $60 \%$ of the allowed overcurrent ( $150 \%, 1 \mathrm{~min}$ ), a warning signal output is provided (signal output at $150 \%$, 36 sec ).

### 6.2.4 Speed Command Loss

When setting operation speed using an analog input at the terminal block, communication options, or the keypad, speed command loss setting can be used to select the inverter operation for situations when the speed command is lost due to the disconnection of signal cables.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 12 | Speed command loss operation mode | Lost Cmd Mode | 1 | Free-Run | - | - |
|  | 13 | Time to determine speed command loss | Lost Cmd Time | 1.0 |  | 0.1-120 | S |
|  | 14 | Operation frequency at speed command loss | Lost Preset F | 0.00 |  | Start <br> frequencyMax. frequency | Hz |
|  | 15 | Analog input loss decision level | AI Lost Level | 0 | Half of x 1 |  | - |
| OU | 31 | Multi-function Relay 1 | Relay 1 | 13 | Lost Command | - | - |
|  | 33 | Multi-function output 1 | Q1 Define |  |  |  |  |

## Speed Command Loss Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Pr. 12 Lost Cmd Mode | In situations when speed commands are lost, the inverter can be configured to operate in a specific mode: |  |  |
|  | Setting |  | Function |
|  | 0 | None | The speed command immediately becomes the operation frequency without any protection function. |
|  | 1 | Free-Run | The inverter blocks output. The motor performs in free-run condition. |
|  | 2 | Dec | The motor decelerates and then stops at the time set at Pr. 07 (Trip Dec Time). |
|  | 3 | Hold Input | The inverter calculates the average input value for 10 seconds before the loss of the speed command and uses it as the speed reference. |
|  | 4 | Hold Output | The inverter calculates the average output value for 10 seconds before the loss of the speed command and uses it as the speed reference. |

## Leaming Protection Features

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
|  | 5 | Lost Preset | The inverter operates at the frequency set at Pr. 14 (Lost Preset F). |
| Pr. 15 AI Lost Level, Pr. 13 Lst Cmd Time | Configure the voltage and decision time for speed command loss when using analog input. |  |  |
|  | Setting |  | Function |
|  | 0 | Half of x 1 | Based on the values set at $\ln .08$ and $\ln .12$, protective operation starts when the input signal is reduced to half of the initial value of the analog input set using the speed command (Frq code of Operation group) and it continues for the time (speed loss decision time) set at Pr. 13 (Lost Cmd Time). For example, set the speed command to 2 (V1) at the Frq code in the Operation group, and In. 06 (V1 Polarity) to 0 (Unipolar). When the voltage input drops to less than half of the value set at In. 08 (V1 Volt x 1), the protective function is activated. |
|  | 1 | Below x1 | The protective operation starts when the signal becomes smaller than the initial value of the analog input set by the speed command and it continues for the speed loss decision time set at Pr. 13 (Lost Cmd Time). Codes In. 08 and In. 12 are used to set the standard values. |
| Pr. 14 Lost Preset F |  | ions where sp st Cmd Mod and sets th | d commands are lost, set the operation mode 5 (Lost Preset). This operates the protection quency so that the operation can continue. |

Set Pr. 15 (Al Lost Level) to 1 (Below x 1), Pr. 12 (Lost Cmd Mode) to 2 (Dec), and Pr. 13 (Lost Cmd Time) to 5 sec . Then it operates as follows:


## enertronca <br> SANTERNO

## Note

If speed command is lost while using communication options or the integrated RS-485 communication, the protection function operates after the command loss decision time set at Pr. 13 (Lost Cmd Time) is passed.

### 6.2.5 Dynamic Braking (DB) Resistor Configuration

For Sinus H series, the braking resistor circuit is integrated inside the inverter.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 66 | Braking resistor configuration | DB Warn \%ED | 10 |  | 0-30 | \% |
| OU | 31 | Multi-function relay 1 item | Relay 1 | 31 | $\begin{aligned} & \text { DB Warn } \\ & \text { \%ED } \end{aligned}$ | - | - |
|  | 33 | Multi-function output 1 item | Q1 Define |  |  |  |  |

## Dynamic Braking Resistor Setting Details

| Code | Description |
| :--- | :--- |
| Pr. 66 DB Warn \%ED | Set braking resistor configuration (\%ED: Duty cycle). Braking resistor <br> configuration sets the rate at which the braking resistor operates for one <br> operation cycle. The maximum time for continuous braking is 15 sec and <br> the braking resistor signal is not output from the inverter after the 15 sec <br> period has expired. An example of braking resistor set up is as follows: |
| $\% E D=\frac{T}{T_{-} a c c+T_{-} \text {steady }+T_{-} \text {dec }+T_{-} s t o p} \times 100 \%$ |  |

## Leaming Protection Features

| Code | Description |
| :---: | :---: |
|  | $\% E D=\frac{T_{-} \text {dec }}{T_{-} \text {dec + T_steady } 1+T_{-} \text {acc + T_steady } 2} \times 100 \%$ |
|  | Frequency |
|  | $\underbrace{\text { T_dec }}_{\text {T_steady }}{ }_{\text {T_acc }} \underbrace{}_{\text {T_steady } 2}$ |

[Example 2]

- T_acc: Acceleration time to set frequency
- T_steady: Constant speed operation time at set frequency
- T_dec: Deceleration time to a frequency lower than constant speed operation or the stop time from constant speed operation frequency
- T_stop: Stop time until operation resumes


## (1) Caution

Do not set the braking resistor to exceed the resistor's power rating. If overloaded, it can overheat and cause a fire. When using a resistor with a heat sensor, the sensor output can be used as an external trip signal for the inverter's multi-function input.
6.3 Under Ioad Fault Trip and Warning

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 04 | Load level selection | Load Duty | 0 | Normal Duty | - |  |
|  | 25 | Under load warning selection | UL Warn Sel | 1 | Yes | 0-1 | - |
|  | 26 | Under load warning time | UL Warn Time | 10.0 |  | 0-600 | sec |
|  | 27 | Under load trip selection | ULTrip Sel | 1 | Free-Run | - | - |
|  | 28 | Under load trip timer | ULTrip Time | 30.0 |  | 0-600 | sec |
|  | 29 | Under load upper limit level | UL LF Level | 30 |  | 10-100 | \% |
|  | 30 | Under load lower limit level | UL BF Level | 30 |  | 10-100 | \% |

## Under Load Trip and Warning Setting Details

| Code | Description |
| :---: | :---: |
| Pr. 27 ULTrip Sel | Sets the underload fault trip occurs. If set to 0(None), does not detect the underload fault trip. If set to 1 (Free-Run), the output is blocked in an underload fault trip situation. If set to 2 (Dec), the motor decelerates and stops when an underload trip occurs. |
| Pr. 25 UL Warn Sel | Sets the underload warning options. Set to 1 (Yes) and set the multifunction output terminals (at OU-31 and 33) to 7 (Underload). The warning signals are output when an underload condition arises. |
| Pr. 26 UL Warn Time, Pr. 28 ULTrip Time | The protection function operates when the underload level condition explained above is maintained for a set warning time or fault trip time. This function does not operate if energy-saving operation is activated at Ad-50 (E-Save Mode). |
| Pr. 29 UL LF Level, Pr. 30 UL BF Level | - Setting Heavy Duty <br> - Do not support Pr.29. <br> - At Pr.30, the underload level is decided based on the motor's rated current. <br> Rated slip $\times 2$ <br> Output frequency <br> - Setting Normal Duty <br> - At Pr.29, the under load rate is decided based on twice the operation frequency of the motor's rated slip speed (bA. 12 Rated Slip). <br> - At Pr.30, the under load rate is decided based on the base frequency set at dr. 18 (Base Freq).An upper limit and lower limit is based on the inverter's rated current. |

## Leaming Protection Features

### 6.3.1 Fan Fault Detection

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr | 79 | Cooling fan fault <br> selection | FAN Trip <br> Mode | 1 | Warning |  |
| OU | 31 | Multi-function relay 1 | Relay 1 | 8 | FAN Warning |  |
| OU | 33 | Multi-function output 1 | Q1 Define |  | - |  |

Fan Fault Detection Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Pr. 79 FAN Trip Mode | Set the cooling fan fault mode. |  |  |
|  |  |  | Funct |
|  | 0 | Trip | The in displa |
|  | 1 | Warning | When set to outp |
| OU. 33 Q1 Define, OU. 31 Relay1 | When the code value is set to 8 (FAN Warning), the fan error signal is output and operation continues. However, when the inverter inside temperature rises above a certain level, output is blocked due to activation of overheat protection. |  |  |

### 6.3.2 Lifetime Diagnosis of Components

## Registering a capacitance reference for inspection

## Note

To perform a capacitor diagnosis, a capacitance reference must be measured and registered by setting Pr-61 (CAP Diag) to 1 (Ref Diag) when the inverter is used for the first time. The measured reference value is saved at Pr -63 and is used asthe reference for the capacitor life diagnosis.

Refer to the following instructions to measure a reference capacitance.
1 Set an appropriate capacitor diagnosis current based on the inverter's rated output at Pr-60 (CAP DiagCurr).

- The capacitor diagnosis current is a direct current that is applied to the capacitor for inspection, and is defined asin a percentage of the rated inverter output. Because the
value is defined based on the inverter output, set an appropriate value if the motor has smaller rated current.

2 At Pr-62 (CAP Exchange Level), set the capacitor replacement warning level to a value between $50.0 \%$ and $95.0 \%$

3 Set Pr-61 (CAP Diag) to "1" (Ref Diag). Then, the direct current set at Pr-60 (CAP DiagCurr)is output.

- The capacitor diagnosis is only available when the inverter is stopped.
- If Pr-6lis set to 1 (Ref Diag), the displayed value at Pr-63 reflects $100 \%$ of the measured capacitance.
- If you plan to perform a capacitor diagnosis using Pr-61(CAP Diag), the initial capacitance must be measured when the inverter is used for the first time. A capacitance measured on a used inverter leads to inaccurate inspection results due to an incorrect reference capacitance value.
4 Turn off the input to the inverter.
5 Turn on the inverter when a low voltage trip (LVT) occurs.
6 View the value displayed at Pr-63 (CAP Diag Level). When Pr-61 is set to " 1 "(Ref Diag), Pr-63 displays $100 \%$ of the capacitance.
[Main Capacitor Diagnosis details]

| Group | Code | Name | LCD Display | Setting value | Setting Range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 60 | Capacitance Diagnose current Level | CAP. DiagPerc | 0.0 | 10.0-100.0 | \% |
|  | 61 | CAP. Diagnosis mode | CAP. Diag | 0 | 0 None | \% |
|  |  |  |  |  | 1 Ref Diag |  |
|  |  |  |  |  | 2 Pre Diag |  |
|  |  |  |  |  | 3 Init Diag |  |
|  | 62 | CAP Exchange Level | CAP Exchange Level | 0 | $50.0 \sim 95.0$ | \% |
|  | 63 | CAP Diag Level | CAP Diag Level | 0 | $0.0 \sim 100.0$ | \% |

## Inspecting the capacitor life and initializing the capacitance reference

Refer to the following instructions to inspect the capacitor life and initialize the capacitance reference.

## Leaming Protection Features

## Note

To perform a capacitor diagnosis, a capacitance reference must be measured and registered by setting Pr-61 (CAP Diag) to 1 (Ref Diag) when the inverter is used for the first time. The measured reference value is registered at PRT-63, and is used asthe reference for the capacitor life diagnosis.

1 On an inverter whose run time has reached the cumulated time for capacitor replacement, set Pr-61 (CAP Diag) to 2 (Pre Diag).
2 Check the value displayed at Pr-63 (CAP Diag Level). If the value displayed at Pr-63 is smaller than the value set at Pr-62 (CAP. Level 1), a capacitor replacement warning (CAP Exchange) will occur.
3 While the capacitor replacement warning continues, confirm that the first bit at Pr-89 (Inverter State) is set.
4 Set Pr-62 to 0.0\%. The capacitor replacement warning (CAP Exchange) will be released.
5 Set Pr-61 to 3 (CAP. Init) and make sure that the value displayed at Pr-63has changed to 0.0\%.

## Lifetime diagnosis for fans

Enter the Pr-87(Fan exchange warning level) code (\%). After the selected usage (\%) is reached (out of 50,000 hours), the fan exchange warning message will appear in the multifunctional output or keypad.

The total fan usage level (\%) appears at Pr-86. When exchanging fans, you may initialize the accumulated value to 0 by setting the CNF-75 (Initializing accumulated time for cooling fans) to 1.

| Grou | Cod | Name | LCD Display | Setting value |  | Setting | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 86 | Accumulated percentof fan usage | FAN Time Perc | 0.0 |  | 0.0-6553.5 | \% |
|  | 87 | Fan exchange warning Level | FAN Exchange level | 90.0 |  | 0.0-100.0 | \% |
| CNF* | 75 | Initialize operation time of cooling fans | FAN Time Rst | 0 | No |  | - |
|  |  |  |  | 1 | Yes |  |  |
| OU | 31 | Multi-function relay 1 | Relay 1 | 38 | FAN Exchange |  | - |
|  | 32 | Multi-function relay 2 | Relay 2 |  |  |  |  |
|  | 33 | Multi-function output 1 | Q1 Define |  |  |  |  |

*Available on LCD keypad only.

## enertronica <br> SANTERNO

### 6.3.3 Low Voltage Fault Trip

When inverter input power is lost and the internal DC link voltage drops below a certain voltage level, the inverter stops output and a low voltage trip occurs.

| Group | Code | Name | LCD Display | Parameter Setting | Setting <br> range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr | 81 | Low voltage trip <br> decision delay time | LVT Delay | 0.0 | $0-60$ | sec |  |
| OU | 31 | Multi-function relay 1 | Relay 1 | 11 | Low Voltage |  | - |
|  | 33 | Multi-function output <br> 1 | Q1 Define |  |  |  |  |

## Low Voltage Fault Trip Setting Details

| Code | Description |
| :--- | :--- |
| Pr.81 LVT Delay | If the code value is set to 11 (Low Voltage), the inverter stops the output <br> first when a low voltage trip condition arises, then a fault trip occurs after <br> the low voltage trip decision time is passed. The warning signal for a low <br> voltage fault trip can be provided using the multi-function output or a <br> relay. However, the low voltage trip delay time (LVT Delay time) does not <br> apply to warning signals. |

### 6.3.4 Output Block by Multi-Function Terminal

When the multi-function input terminal is set as the output block signal terminal and the signal is input to the terminal, then the operation stops.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In | 65-71 <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal setting <br> options | Px Define <br> (Px: P1-P7 in IP20 <br> models, | 5 | BX | - |
| P1-P5 in IP66 |  |  |  |  |  |  |
| models) |  |  |  |  |  |  |

## Leaming Protection Features

## Output Block by Multi-Function Terminal Setting Details

| Code | Description |
| :--- | :--- |
| In.65-71 (P1-P7 in | When the operation of the multi-function input terminal is set to 5 (BX) |
| IP20 models), | and is turned on during operation, the inverter blocks the output and 'BX' |
| In.65-69 (P1-P5 in | is displayed on the keypad display. While 'BX' is displayed on the keypad <br> screen, the inverter's operation information including the operation <br> Irequency and current at the time of BX signal can be monitored. The <br> inverter resumes operation when the BX terminal turns off and operation <br> command is input. |
| Px Define |  |

### 6.3.5 Trip Status Reset

Restart the inverter using the keypad or analog input terminal, to reset the trip status.

| Group | Code | Name | LCD Display | Parameter <br> Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In | 65-71 <br> in IP20 <br> models, <br> 65-69 <br> in IP66 <br> models | Px terminal setting options | $\begin{aligned} & \text { Px Define } \\ & \text { (Px: P1-P7 in IP20 } \\ & \text { models, } \\ & \text { P1-P5 in IP66 } \\ & \text { models) } \end{aligned}$ | 3 | RST | - |  |

## Trip Status Reset Setting Details

| Code | Description |
| :--- | :--- |
| In.65-71 (P1-P7 in | Press [Stop/Reset] key on the keypad or use the multi-function input |
| IP20 models), | terminal to restart the inverter. Set the multi-function input terminal to 3 |
| In.65-69 (P1-P5 in | (RST) and turn on the terminal to reset the trip status. |
| IP66 models) |  |
| PxDefine |  |

### 6.3.6 Inverter Diagnosis State

Check the diagnosis of components or devices for inverter to check if they need to be replaced.

| Group | Code | Name | LCD Display | Parameter Setting | Setting Range |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRT | 89 | CAP, FAN replacement warning | Inverter State | 11 | Bit | 00-10 | Bit |
|  |  |  |  |  | 00 | - |  |
|  |  |  |  |  | 01 | CAP Warning |  |
|  |  |  |  |  | 10 | FAN Warning |  |

## ENERTRONICA

SANTERNO

### 6.3.7 Operation Mode on Option Card Trip

Option card trips may occur when an option card is used with the inverter. Set the operation mode for the inverter when a communication error occurs between the option card and the inverter body, or when the option card is detached during operation.

| Group | Code Name |  | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 80 | Operation mode on option card trip | Opt Trip Mode | 0 | None | 0-3 | - |
|  |  |  |  | 1 | Free-Run |  |  |
|  |  |  |  | 2 | Dec |  |  |

## Operation Mode on Option Trip Setting Details

| Code | Description |  |  |
| :--- | :--- | :--- | :--- |
| Pr. 80 Opt Trip Mode | Setting |  | Function |
|  | 0 | None | No operation |
|  | 1 | Free-Run | The inverter output is blocked and fault trip <br> information is shown on the keypad. |
|  | 2 | Dec | The motor decelerates to the value set at Pr. 07 <br> (Trip Dec Time). |

### 6.3.8 No Motor Trip

If an operation command is run when the motor is disconnected from the inverter output terminal, a 'no motor trip' occurs and a protective operation is performed by the system.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr | 31 | Operation on no motor trip | No MotorTrip | 0 | None | - | - |
|  | 32 | No motor trip current level | No Motor Level | 5 |  | 1-100 | \% |
|  | 33 | No motor detection time | No Motor Time | 3.0 |  | 0.1-10 | S |

## matana <br> SANTERNO

## No Motor Trip Setting Details

| Code | Description |
| :--- | :--- |
| Pr.32 No Motor | If the output current value [based on the rated current (bA.13)] is lower |
| Level, Pr.33 No | than the value set at Pr.32 (No Motor Level), and if this continues for the |
| Motor Time | time set at Pr.33 (No Motor Time), a'no motor trip'occurs. |

## (1) Caution

If bA. 07 (V/F Pattern) is set to 1 (Square), set Pr. 32 (No Motor Level) to a value lower than the factory default. Otherwise,'no motor trip'due to a lack of output current will result when the 'no motor trip' operation is set.

### 6.3.9 Low Voltage Trip 2

If you set the Pr-82(LV2 Selection) code to Yes (1), the trip notification is displayed when a low voltage trip occurs. In this case, even if the voltage of the DC Link condenser is higher than the trip level, the LV2 trip will not be retrieved. To retrieve the trip, reset the inverter. The trip history will not be saved.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting Range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Pr}$ | 82 | LV2 Selection | LV2 Enable | Yes(1) | $0 / 1$ | - |

### 6.4 Fault/Warning List

The following list shows the types of faults and warnings that can occur while using the Sinus H inverter. Please refer to $\underline{6}$ Learning Protection Features on page $\underline{274}$ for details about faults and warnings.

## SANTTERNO

| Category |  | LCD Display | Details |
| :---: | :---: | :---: | :---: |
| Major fault | Latch type | Over Current1 | Over current trip |
|  |  | Over Voltage | Over voltage trip |
|  |  | External Trip | Trip due to an external signal |
|  |  | NTC Open | Temperature sensor fault trip |
|  |  | Over Current2 | ARM short current fault trip |
|  |  | Option Trip-x* | Option fault trip* |
|  |  | Over Heat | Over heat fault trip |
|  |  | Out Phase Open | Output open-phase fault trip |
|  |  | In Phase Open | Input open-phase fault trip |
|  |  | Inverter OLT | Inverter overload fault trip |
|  |  | Ground Trip | Ground fault trip |
|  |  | Fan Trip | Fan fault trip |
|  |  | E-Thermal | Motor overheat fault trip |
|  |  | Pre-PID Fail | Pre-PID operation failure |
|  |  | IO Board Trip | IO Board connection fault trip |
|  |  | Ext-Brake | External brake fault trip |
|  |  | No MotorTrip | No motor fault trip |
|  |  | Low Voltage 2 | Low voltage fault trip during operation |
|  |  | ParaWrite Trip** | Write parameter fault trip |
|  | Level type | Low Voltage | Low voltage fault trip |
|  |  | BX | Emergency stop fault trip |
|  |  | Lost Command | Command loss trip |
|  |  | Safety A(B) Err | Safety A(B) contact trip |
|  | Hardware damage | EEP Err | External memory error |
|  |  | ADC Off Set | Analog input error |
|  |  | Watch Dog-1 | CPU Watch Dog fault trip |
|  |  | Watch Dog-2 |  |
| Minor fault |  | Over Load | Motor overload fault trip |
|  |  | Under Load | Motor underload fault trip |

## Leaming Protection Features

| Category | LCD Display | Details |
| :--- | :--- | :--- |
| Warning | Lost Command | Command loss fault trip warning |
|  | Over Load | Overload warning |
|  | Under Load | Under load warning |
|  | Inverter OLT | Inverter overload warning |
|  | Fan Warning | Fan operation warning |
|  | DB Warn \%ED | Braking resistor braking rate warning |
|  | Retry Tr Tune | Rotor time constant tuning error |
|  | CAP Exchange | Capacitor replacement warning |
|  | FAN Exchange | Fan replacement warning |

* Applies only when an option board is used.
** Displayed on an LCD keypad only.


## 7 RS-485 Communication Features

This section in the user manual explains how to control the inverter with a PLC or a computer over a long distance using the RS-485 communication features. To use the RS-485 communication features, connect the communication cables and set the communication parameters on the inverter. Refer to the communication protocols and parameters to configure and use the RS-485 communication features.

### 7.1 Communication Standards

Following the RS-485 communication standards, Sinus H products exchange data with a PLC and computer. The RS-485 communication standards support the Multi-drop Link System and offer an interface that is strongly resistant to noise. Please refer to the following table for details about the communication standards.

| Item | Standard |
| :--- | :--- |
| Communication <br> method/ Transmission <br> type | RS-485/Bus type, Multi-drop Link System |
| Inverter type name | Sinus H |
| Number of connected <br> inverters/ Transmission <br> distance | Maximum of 16 inverters / Maximum1,200m (recommended distance: <br> within 700m) |
| Recommended cable <br> size | 0.75mm ${ }^{2}$, (18AWG), Shielded Type Twisted-Pair (STP) Wire |
| Installation type | Dedicated terminals (S+/S-/SG) on the control terminal block |
| Power supply | Supplied by the inverter - insulated power source from the inverter's <br> internal circuit |
| Communication speed | 1,200/2,400/9,600/19,200/38,400/57,600/115,200 bps |
| Control procedure | Asynchronous communications system |
| Communication system | Half duplex system |
| Character system | Modbus-RTU: Binary |
| Stop bit length | 1-bit/2-bit |
| Frame error check | 2 bytes |
| Parity check | None/Even/Odd |

## ENERTRONICA <br> SANTERNO

### 7.2 Communication System Configuration

In an RS-485 communication system, the PLC or computer is the master device and the inverter is the slave device. When using a computer as the master, the USB converter must be integrated with the computer, so that it can communicate with the inverter through the USB/RS-485 converter. Specifications and performance of converters may vary depending on the manufacturer, but the basic functions are identical. Please refer to the converter manufacturer's user manual for details about features and specifications.

Connect the wires and configure the communication parameters on the inverter by referring to the following illustration of the communication system configuration.


### 7.2.1 Communication Line Connection

Make sure that the inverter is turned off completely, and then connect the RS-485 communication line to the S+/S-/SG terminals of the terminal block. The maximum number of inverters you can connect is 16. For communication lines, use shielded twisted pair (STP) cables.

The maximum length of the communication line is 1,200 meters, but it is recommended to use no more than 700 meters of communication line to ensure stable communication. Please use a repeater to enhance the communication speed when using a communication line longer than 1,200 meters or when using a large number of devices. A repeater is effective when smooth communication is not available due to noise interference.

## (1) Caution

When wiring the communication line, make sure that the SG terminals on the PLC and inverter are connected. SG terminals prevent communication errors due to electronic noise interference.

### 7.2.2 Setting Communication Parameters

Before proceeding with setting communication configurations, make sure that the communication lines are connected properly. Turn on the inverter and set the communication parameters.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CM | 01 | Built-in <br> communication <br> inverter ID | Int485 St ID | 1 | $1-250$ | - |  |
|  | 02 | Built-in <br> communication <br> protocol | Int485 Proto | 0 | ModBus RTU | 0 | - |
|  | 03 | Built-in <br> communication speed | Int485 <br> BaudR | 3 | 9600 bps | $0-7$ | - |
|  | 04 | Built-in <br> communication frame <br> setting | Int485 Mode | 0 | D8/PN/S1 | $0-3$ | - |

## Communication Parameters Setting Details

| Code | Description |  |
| :---: | :---: | :---: |
| CM. 01 Int485 St ID | Set the inverter station ID between 1 and 250. |  |
| CM. 03 Int485 BaudR | Set a communication setting speed up to 115,200 bps. |  |
|  | Setting | Function |
|  | 0 | 1,200 bps |
|  | 1 | 2,400 bps |
|  | 2 | 4,800 bps |
|  | 3 | 9,600 bps |
|  | 4 | 19,200 bps |
|  | 5 | 38,400 bps |
|  | 6 | 56 K bps |
|  | 7 | 115 Kbps |

## RS-485 Communication Features



### 7.2.3 Setting Operation Command and Frequency

To select the built-in RS485 communication as the source of command, set the Frq code to 6 (Int485) on the keypad (basic keypad with 7-segment display). On an LCD keypad, set the DRV code to 3 (Int485). Then, set common area parameters for the operation command and frequency via communication.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting range | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Pr}$ | 12 | Speed command loss <br> operation mode | Lost Cmd <br> Mode | 1 | Free-Run | $0-5$ |
|  | 13 | Time to determine <br> speed command loss | Lost Cmd Time | 1.0 | $0.1-120$ | S |
|  | 14 | Operation frequency at <br> speed command loss | Lost Preset F | 0.00 | Start <br> frequency- <br> Maximum <br> frequency | Hz |


| Group | Code | Name | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OU | 31 | Multi-function relay 1 | Relay 1 | 13 | Lost Command | 0-35 | - |
|  | 33 | Multi-function output 1 | Q1 Define |  |  |  |  |
| Operation | DRV | Command source | Cmd Source* | 3 | Int 485 | 0-4 | - |
|  | Frq | Frequency setting method | Freq Ref Src | 6 | Int 485 | 0-12 | - |

* Displayed in DRV-06 on an LCD keypad.


### 7.2.4 Command Loss Protective Operation

Configure the command loss decision standards and protective operations run when a communication problem lasts for a specified period of time.

## Command Loss Protective Operation Setting Details

| Code | Description |  |  |
| :---: | :---: | :---: | :---: |
| Pr. 12 Lost Cmd Mode, | Select the operation to run when a communication error has occurred and lasted exceeding the time set at Pr. 13. |  |  |
|  | Setting |  | Function |
|  | 0 | None | The speed command immediately becomes the operation frequency without any protection function. |
|  | 1 | Free-Run | The inverter blocks output. The motor performs in free-run condition. |
|  | 2 | Dec | The motor decelerates and then stops at the time set at Pr. 07 (Trip Dec Time). |
|  | 3 | Hold Input | The inverter calculates the average input value for 10 seconds before the loss of the speed command and uses it as the speed reference. |
|  | 4 | Hold Output | The inverter calculates the average output value for 10 seconds before the loss of the speed command and uses it as the speed reference. |
|  | 5 | Lost Preset | The inverter operates at the frequency set at Pr. 14 (Lost Preset F). |

## RS-485 Communication Features

### 7.2.5 Setting Virtual Multi-Function Input

Multi-function input can be controlled using a communication address (Oh0385). Set codes CM.70-77 to the functions to operate, and then set the BIT relevant to the function to 1 at Oh0322 to operate it. Virtual multi-function operates independently from In.65-71 in IP20 models, In.65-69 in IP66 models multi-function inputs and cannot be set redundantly. Virtual multi-function input can be monitored using CM. 86 (Virt DI Status). Before you configure the virtual multi-function inputs, set the DRV code according to the command source.

| Group | Code | Name | LCD Display | Parameter | Setting | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CM | $70-77$ | Communication <br> multi-function input x | Virtual DI <br> (x: 1-8) | 0 | None | $0-49$ | - |
|  | 86 | Communication <br> multi-function input <br> monitoring | Virt DI Status | - | - | - | - |

Example: When sending an Fx command by controlling virtual multi-function input in the common area via Int485, set CM. 70 to FX and set address Oh0322 to Oh0001.

## Note

The following are values and functions that are applied to address Oh0322:.

| Setting | Function |
| :--- | :--- |
| Oh0001 | Forward operation (Fx) |
| Oh0003 | Reverse operation (Rx) |
| Oh0000 | Stop |

### 7.2.6 Saving Parameters Defined by Communication

If you turn off the inverter after setting the common area parameters or keypad parameters via communication and operate the inverter, the changes are lost and the values changed via communication revert to the previous setting values when you turn on the inverter.

Set CNF-48 to 1 (Yes) to allow all the changes over comunication to be saved, so that the inverter retains all the existing values even after the power has been turned off.

SANTIERNO

Setting address 0h03E0 to 0 and then setting it again to 1 via communication allows the existing parameter settings to be saved. However, setting address Oh03EO to 1 and then setting it to 0 does not carry out the same function. Parameters defined by communication can only be saved using an LCD keypad.

| Group | Code | Name | LCD Display | Parameter <br> Setting | Setting <br> range | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CNF* | 48 | Save parameters | Parameter <br> Save | 0 | No | $0-1$ | - |
|  |  |  | 1 | Yes |  |  |  |

*Available on an LCD keypad only.

### 7.2.7 Total Memory Map for Communication

| Communication Area | Memory Map | Details |
| :---: | :---: | :---: |
| Communication common compatible area | Oh0000Oh00FF | Sinus H compatible area |
| Parameter registration type area | $\begin{aligned} & \hline \text { Oh0100- } \\ & \text { Oh01FF } \\ & \hline \end{aligned}$ | Areas registered at CM.31-38 and CM.51-58 |
|  | $\begin{aligned} & \hline \text { Oh0200- } \\ & \text { Oh023F } \end{aligned}$ | Area registered for User Group |
|  | $\begin{aligned} & \text { Oh0240- } \\ & \text { Oh027F } \end{aligned}$ | Area registered for Macro Group |
|  | $\begin{aligned} & \hline \text { Oh0280- } \\ & \text { Oh02FF } \\ & \hline \end{aligned}$ | Reserved |
| Sinus H communication common area | $\begin{aligned} & \text { Oh0300- } \\ & \text { Oh037F } \end{aligned}$ | Inverter monitoring area |
|  | $\begin{array}{\|l\|} \hline \text { Oh0380- } \\ \text { Oh03DF } \end{array}$ | Inverter control area |
|  | $\begin{array}{\|l\|} \hline \text { Oh03E0- } \\ \text { Oh03FF } \end{array}$ | Inverter memory control area |
|  | Oh0400Oh0FFF | Reserved |
|  | Oh1100 | dr Group |
|  | Oh1200 | bA Group |
|  | Oh1300 | Ad Group |
|  | Oh1400 | Cn Group |
|  | Oh1500 | In Group |
|  | Oh1600 | OU Group |
|  | Oh1700 | CM Group |
|  | Oh1800 | AP Group |
|  | Oh1B00 | Pr Group |
|  | Oh1C00 | M2 Group |

## RS-485 Communication Features

### 7.2.8 Parameter Group for Data Transmission

By defining a parameter group for data transmission, the communication addresses registered in the communication function group (CM) can be used in communication. Parameter group for data transmission may be defined to transmit multiple parameters at once, into the communication frame.

| Group | Code | Name | LCD Display | Parameter Setting |  | Setting range | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CM | 31-38 | Output communication address x | Para Status-x | - | - | 0000-FFFF | Hex |
|  | 51-58 | Input communication address $x$ | Para Control-x | - | - | 0000-FFFF | Hex |

## Currently Registered CM Group Parameter

| Address | Parameter | Assigned content by bit |
| :--- | :--- | :--- |
| Oh0100- <br> Oh0107 | Status Parameter- <br> $1-$ <br> Status Parameter-8 | Parameter communication code value registered at <br> CM. $31-38$ (Read-only) |
| Oh0110- <br> Oh0117 | Control Parameter- <br> $1-$ <br> Control Parameter- <br> 8 | Parameter communication code value registered at <br> CM.51-58 (Read/Write access) |

## Note

When registering control parameters, register the operation speed (Oh0005, Oh0380, Oh0381) and operation command ( $0 h 0006,0 h 0382$ ) parameters at the end of a parameter control frame. For example, when the parameter control frame has 5 parameter control items (Para Control - x ), register the operation speed at Para Control-4 and the operation command to Para Control-5.

### 7.3 Communication Protocol

The built-in RS-485 communication supports the Modbus-RTU protocol.

### 7.3.1 Modbus-RTU Protocol

### 7.3.1.1 Function Code and Protocol (unit: byte)

In the following section, station ID is the value set at CM. 01 (Int485 St ID), and starting address is the communication address (starting address size is in bytes). For more information about communication addresses, refer to 7.4Compatible Common Area Parameter on page 309.

## Function Code \#03: Read Holding Register

| Query Field Name | Response Field Name |  |
| :---: | :---: | :---: |
| Station ID | Station ID |  |
| Function(0x03) | Function (0x03) |  |
| Starting Address Hi | Byte Count |  |
| Starting Address Lo | Data Hi |  |
| \#of Points Hi | Data Lo |  |
| \#of Points Lo | ... | \#number of Points |
| CRC Lo | $\ldots$ |  |
| CRCHi | Data Hi |  |
|  | Data Lo |  |
|  | CRC Lo |  |
|  | CRC Hi |  |

## Function Code \#04: Read Input Register

| Query Field Name |
| :--- |
| Station ID |
| Function(0x04) |
| Starting Address Hi |
| Starting Address Lo |
| \#of Points Hi |
| \#of Points Lo |
| CRC Lo |
| CRC Hi |
|  |


| Response Field Name |
| :--- |
| Station ID |
| Function (0x04) <br> Byte Count <br> Data Hi <br> Data Lo <br> $\ldots$ <br> $\ldots$ <br> Data Hi <br> Data Lo <br> CRC Lo <br> CRC Hi |

## RS-485 Communication Features

## Function Code \#06: Preset Single Register

| Query Field Name | Response Field Name |
| :---: | :---: |
| Station ID | Station ID |
| Function (0x06) | Function (0x06) |
| Starting Address Hi | Register Address Hi |
| Register Address Lo | Register Address Lo |
| Preset Data Hi | Preset Data Hi |
| Preset Data Lo | Preset Data Lo |
| CRC Lo | CRC Lo |
| CRC Hi | CRC Hi |

Function Code \#16 (hex Oh10): Preset Multiple Register

| Query Field Name | Response Field Name |
| :---: | :---: |
| Station ID | Station ID |
| Function (0x10) | Function (0x10) |
| Starting Address Hi | Starting Address Hi |
| Starting Address Lo | Starting Address Lo |
| \#of Register Hi | \#of Register Hi |
| \#of Register Lo | \#of Register Lo |
| Byte Count | CRCLo |
| Data Hi | CRC Hi |
| Data Lo |  |
| ... | \#number of Points |
| $\ldots$ |  |
| Data Hi |  |
| Data Lo |  |
| CRC Lo |  |
| CRC Hi |  |

## Exception Code

| Code |
| :--- |
| 01:ILLEGALFUNCTION |
| 02:ILLEGALDATAADDRESS |
| 03:ILLEGALDATA VALUE |
| 06: SLAVE DEVICE BUSY |

Code
01:ILLEGALFUNCTION
02:ILLEGALDATAADDRESS
03: ILLEGAL DATA VALUE
06: SLAVE DEVICE BUSY

## Response

## Field Name

Station ID
Function*
Exception Code
CRC Lo
CRC Hi

* The function value uses the top level bit for all query values.


## Example of Modbus-RTU Communication in Use

When the Acc time (Communication address 0x1103) is changed to 5.0 sec and the Dec time (Communication address 0x1104) is changed to 10.0 sec .

Frame Transmission from Master to Slave (Request)

| Item | Station <br> ID | Functio <br> n | Starting <br> Address | \# of <br> Register | Byte Count | Data 1 | Data 2 | CRC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | 0x01 | 0x10 | 0x1102 | 0x0002 | 0x04 | 0x0032 | 0x0064 | 0x1202 |
| Descriptio <br> n | $\begin{aligned} & \hline \text { CM. } 01 \\ & \text { Int485 } \\ & \text { St ID } \end{aligned}$ |  | Starting Address -1 (0x1103-1) | - | - | 50 <br> (ACC <br> time 5.0sec) | $\begin{aligned} & \hline 100 \\ & \text { (DEC } \\ & \text { time } \\ & 10.0 \mathrm{sec}) \end{aligned}$ | - |

Frame Transmission from Slave to Master (Response)

| Item | Station ID | Function | Starting Address | \# of <br> Register | CRC |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Hex | $0 \times 01$ | $0 x 10$ | $0 x 1102$ | $0 \times 0002$ | $0 \times$ E534 |
| Description | CM.01 <br> Int485 St ID | Preset <br> Multiple <br> Register | Starting Address - <br> 1 <br> (0x1103-1) | - | - |

## RS-485 Communication Features

### 7.4 Compatible Common Area Parameter

The following are common area parameters compatible with Sinus M.

| Comm. Address | Parameter | Scale | Unit | R/W | Assigned Content by Bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oh0000 | Inverter model | - | - | R | 6: Sin |  |
| 0h0001 | Inverter capacity | - | - | R | $\begin{aligned} & \text { 0: } 00 \\ & \text { 2: } 00 \\ & \text { 5: } 00 \\ & \text { 7:00 } \\ & 9: 00 \\ & 256: \end{aligned}$ | 75 kW ], 1:0003 [1.5 kW], 2 kW ], 4:0011 [ 5.5 kW ], 5 kW ], 6: 0017 [11 kW], 5 kW ], 8: 0025 [ 18.5 kW ], 2 kW ], 10: 0034 [30 kW], [0.4 kW], 259:0007 [4.0 kW] |
| Oh0002 | Inverter input | - | - | R | 0: 2S | duct |
|  | voltage |  |  |  | 1:4T |  |
| Oh0003 | Version | - | - | R | Exam | h0100:Version 1.00 |
|  |  |  |  |  | Exam | Oh0101:Version 1.01 |
| Oh0004 | Reserved | - | - | R/W |  |  |
| 0h0005 | Command frequency | 0.01 | Hz | R/W |  |  |
| 0h0006 | Operation |  | - | R | B15 | Reserved |
|  | command (option) |  |  |  | B14 | 0: Keypad Freq, |
|  |  |  |  |  | B13 | 1: Keypad Torq |
|  |  |  |  |  | B12 | 2-16: Terminal block multi- |
|  |  |  |  |  | B11 | step speed |
|  |  |  |  |  | B10 | 17: Up, 18: Down |
|  |  |  |  |  | B9 | 19: STEADY <br> 22:V1, 24:V2, 25: 12 , <br> 26: Reserved <br> 27: Built-in 485 <br> 28: Communication option <br> 30:JOG, 31: PID |
|  |  |  |  |  | B8 | 0: Keypad |
|  |  |  |  |  | B7 | 1: Fx/Rx-1 |
|  |  |  |  |  | B6 | 2: Fx/Rx-2 |
|  |  |  |  |  |  | 3: Built-in 485 |
|  |  |  |  |  |  | 4: Communication option |
|  |  |  |  | R/W | B5 | Reserved |
|  |  |  |  |  | B4 | Emergency stop |
|  |  |  |  |  | B3 | W:Trip initialization ( $0 \rightarrow 1$ ), R:Trip status |
|  |  |  |  |  | B2 | Reverse operation (R) |
|  |  |  |  |  | B1 | Forward operation (F) |

## ENERTRONICA

SANTERNO
RS-485 Communication Features

| Comm. Address | Parameter | Scale | Unit | R/W | Assigned Content by Bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | B0 | Stop (S) |
| Oh0007 | Acceleration time | 0.1 | s | R/W | - |  |
| Oh0008 | Deceleration time | 0.1 | s | R/W | - |  |
| Oh0009 | Output current | 0.1 | A | R | - |  |
| Oh000A | Output frequency | 0.01 | Hz | R | - |  |
| Oh000B | Output voltage | 1 | V | R | - |  |
| Oh000C | DC link voltage | 1 | V | R | - |  |
| Oh000D | Output power | 0.1 | kW | R | - |  |
| Oh000E | Operation status |  | - | R | B15 | 0: Remote, 1:Keypad Local |
|  |  |  |  |  | B14 | 1: Frequency command source by communication (built-in, option) |
|  |  |  |  |  | B13 | 1: Operation command source by communication (built-in, option) |
|  |  |  |  |  | B12 | Reverse operation command |
|  |  |  |  |  | B11 | Forward operation command |
|  |  |  |  |  | B10 | Brake release signal |
|  |  |  |  |  | B9 | Jog mode |
|  |  |  |  |  | B8 | Drive stopped. |
|  |  |  |  |  | B7 | DC Braking |
|  |  |  |  |  | B6 | Speed reached |
|  |  |  |  |  | B5 | Decelerating |
|  |  |  |  |  | B4 | Accelerating |
|  |  |  |  |  | B3 | Fault Trip - operates according to Pr. 30 setting |
|  |  |  |  |  | B2 | Operating in reverse direction |
|  |  |  |  |  | B1 | Operating in forward direction |
|  |  |  |  |  | B0 | Stopped |
| Oh000F | Fault trip information |  | - | R | B15 | Reserved |
|  |  |  |  |  | B14 | Reserved |
|  |  |  |  |  | B13 | Reserved |
|  |  |  |  |  | B12 | Reserved |
|  |  |  |  |  | B11 | Reserved |
|  |  |  |  |  | B10 | H/W-Diag |
|  |  |  |  |  | B9 | Reserved |
|  |  |  |  |  | B8 | Reserved |
|  |  |  |  |  | B7 | Reserved |

SANTERNO

## RS-485 Communication Features

| Comm. Address | Parameter | Scale | Unit | R/V | Assigned Content by Bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | B6 | Reserved |
|  |  |  |  |  | B5 | Reserved |
|  |  |  |  |  | B4 | Reserved |
|  |  |  |  |  | B3 | Level Type trip |
|  |  |  |  |  | B2 | Reserved |
|  |  |  |  |  | B1 | Reserved |
|  |  |  |  |  | B0 | Latch Type trip |
| Oh0010 | Input terminal information | - | - | R | $\begin{aligned} & \text { B15- } \\ & \text { B7 } \\ & \hline \end{aligned}$ | Reserved |
|  |  |  |  |  | B6 | P7 |
|  |  |  |  |  | B5 | P6 |
|  |  |  |  |  | B4 | P5 |
|  |  |  |  |  | B3 | P4 |
|  |  |  |  |  | B2 | P3 |
|  |  |  |  |  | B1 | P2 |
|  |  |  |  |  | B0 | P1 |
| Oh0011 | Output terminal | - | - | R | B15 | Reserved |
|  | information |  |  |  | B14 | Reserved |
|  |  |  |  |  | B13 | Reserved |
|  |  |  |  |  | B12 | Reserved |
|  |  |  |  |  | B11 | Reserved |
|  |  |  |  |  | B10 | Reserved |
|  |  |  |  |  | B9 | Reserved |
|  |  |  |  |  | B8 | Reserved |
|  |  |  |  |  | B7 | Reserved |
|  |  |  |  |  | B6 | Reserved |
|  |  |  |  |  | B5 | Reserved |
|  |  |  |  |  | B4 | Reserved |
|  |  |  |  |  | B3 | Reserved |
|  |  |  |  |  | B2 | Reserved |
|  |  |  |  |  | B1 | MO |
|  |  |  |  |  | B0 | Relay 1 |
| Oh0012 | V1 | 0.01 | \% | R | V1 inp | voltage |
| Oh0013 | V2 | 0.01 | \% | R | V2 inpu | voltage |
| Oh0014 | 12 | 0.01 | \% | R | 12 inp | urrent |
| Oh0015 | Motor rotation speed | 1 | rpm | R | $\begin{aligned} & \text { Displ } \\ & \text { speed } \end{aligned}$ | existing motor rotation |
| $\begin{aligned} & \hline \text { Oh0016 } \\ & - \text { Oh0019 } \\ & \hline \end{aligned}$ | Reserved | - | - | - | - |  |
| 0h001A | Select Hz/rpm | - | - | R | 0: Hz | , 1: rpm unit |
| 0h001B | Motor poles | - | - | R | Displ selec | the number of poles for the motor |

### 7.5 Sinus H Expansion Common Area Parameter

### 7.5.1 Monitoring Area Parameter (Read Only)

| Comm. <br> Address | Parameter | Scale | Unit | Assigned content by bit |
| :---: | :---: | :---: | :---: | :---: |
| Oh0300 | Inverter model | - | - | Sinus H: 0006h |
| 0h0301 | Inverter capacity | - | - | 0001 [0.4 kW]: 1900h, 0002 [0.75 kW]: 3200h 0003 [1.5 kW]: 4015h, 0005 [2.2 kW]: 4022h 0007 [4.0 kW]: 4040h, 0011 [ 5.5 kW ]: 4055h 0014 [7.5 kW]: 4075h, 0017 [11 kW]: 40BOh 0020 [15 kW]: 40FOh, 0025 [18.5 kW]: 4125h 0030 [22 kW]: 4160h, 0034 [30 kW]: 41EOh |
| Oh0302 | Inverter input voltage/power (Single phase, 3phase)/cooling method | - | - | 2 S self cooling: 0220h, <br> 2 S forced cooling:0221h <br> 2T self cooling:0230h, <br> 2T forced cooling: 0231h <br> 4T self cooling: 0430h, <br> 4T forced cooling: 0431h |
| Oh0303 | Inverter S/W version | - | - | (Ex) 0h0100:Version 1.00 |
| Oh0304 | Reserved | - | - | - |
| 0h0305 | Inverter operation state | - | - | B15 0: Normal state <br> 4: Warning occurred <br> B14 <br> 8: Fault occurred [operates  <br> according to Pr. 30 (Trip Out  <br> B13  <br> B12 - <br> B11 - - <br> B8  <br> B7 1: Speed searching <br> 2: Accelerating <br> B6 3: Operating at constant rate <br> B5 4: Decelerating <br> 5: Decelerating to stop <br> 6: H/W OCS <br> 7: S/W OCS <br> 3: Dwell operating <br> B4  |

## ENERTRONICA

SANTERNO
RS-485 Communication Features

| Comm. Address | Parameter | Scale | Unit | Assigned content by bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | B3 | 0: Stopped |
|  |  |  |  | B2 | 1: Operating in forward direction |
|  |  |  |  | B1 | 3: DC operating (0 speed control) |
|  |  |  |  | B0 |  |
| Oh0306 | Inverter operation frequency command source | - | - | B15 | Operation command source 0: Keypad <br> 1: Communication option <br> 3: Built-in RS 485 <br> 4:Terminal block |
|  |  |  |  | B14 |  |
|  |  |  |  | B13 |  |
|  |  |  |  | B12 |  |
|  |  |  |  | B11 |  |
|  |  |  |  | B10 |  |
|  |  |  |  | B9 |  |
|  |  |  |  | B8 |  |
|  |  |  |  | B7 | Frequency command source <br> 0 : Keypad speed <br> 1:Keypad torque <br> 2-4:Up/Down operation speed <br> 5:V1, 7:V2, 8: I2 <br> 9: Pulse <br> 10: Built-in RS 485 <br> 11: Communication option <br> 13: Jog <br> 14: PID <br> 25-39: Multi-step speed <br> frequency |
|  |  |  |  | B6 |  |
|  |  |  |  | B5 |  |
|  |  |  |  | B4 |  |
|  |  |  |  | B3 |  |
|  |  |  |  | B2 |  |
|  |  |  |  | B1 |  |
|  |  |  |  | B0 |  |
| Oh0307 | LCD keypad S/W version | - | - | (Ex.) Oh0100: Version 1.00 |  |
| Oh0308 | LCD keypad title version | - | - | (Ex.) Oh0101:Version 1.01 |  |
| Oh0309 -Oh30F | Reserved | - | - | - |  |
| 0h0310 | Output current | 0.1 | A | - |  |
| Oh0311 | Output frequency | 0.01 | Hz | - |  |
| Oh0312 | Output rpm | 0 | rpm | - |  |
| Oh0313 | Motor feedback speed | 0 | rpm | -32768 rpm-32767 rpm (directional) |  |
| Oh0314 | Output voltage | 1 | V | - |  |
| 0h0315 | DC Link voltage | 1 | V | - |  |
| Oh0316 | Output power | 0.1 | kW | - |  |
| 0h0317 | Output torque | 0.1 | \% | - |  |
| Oh0318 | PID reference | 0.1 | \% | - |  |
| Oh0319 | PID feedback | 0.1 | \% | - |  |

SANTERNO
RS-485 Communication Features

| Comm. <br> Address | Parameter | Scale | Unit | Assigned content by bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0h031A | Display the number of poles for the $1^{\text {st }}$ motor | - | - | Displays the number of poles for the first motor |  |
| 0h031B | Display the number of poles for the $2^{\text {nd }}$ motor | - | - | Displays the number of poles for the 2nd motor |  |
| Oh031C | Display the number of poles for the selected motor | - | - | Displays the number of poles for the selected motor |  |
| 0h031D | Select Hz/rpm | - | - | 0: Hz, 1: rpm |  |
| $\begin{aligned} & \hline \text { Oh031E } \\ & \text { - Oh031F } \\ & \hline \end{aligned}$ | Reserved | - | - | - |  |
| Oh0320 | Digital input information |  |  | BI5 | Reserved |
|  |  |  |  | - | - |
|  |  |  |  | B7 | Reserved |
|  |  |  |  | B6 | P7(I/O board) |
|  |  |  |  | B5 | P6(I/O board) |
|  |  |  |  | B4 | P5(I/O board) |
|  |  |  |  | B3 | P4(I/O board) |
|  |  |  |  | B2 | P3(I/O board) |
|  |  |  |  | B1 | P2(I/O board) |
|  |  |  |  | B0 | P1(I/O board) |
| Oh0321 | Digital output information | - | - | B15 | Reserved |
|  |  |  |  | - | Reserved |
|  |  |  |  | B4 | Reserved |
|  |  |  |  | B3 | Reserved |
|  |  |  |  | B2 | Reserved |
|  |  |  |  | B1 | Q1 |
|  |  |  |  | B0 | Relay 1 |
| Oh0322 | Virtual digital input information | - | - | B15 | Reserved |
|  |  |  |  | - | Reserved |
|  |  |  |  | B8 | Reserved |
|  |  |  |  | B7 | Virtual DI 8(CM.77) |
|  |  |  |  | B6 | Virtual DI 7(CM.76) |
|  |  |  |  | B5 | Virtual DI 6(CM.75) |
|  |  |  |  | B4 | Virtual DI 5(CM.74) |
|  |  |  |  | B3 | Virtual DI 4(CM.73) |
|  |  |  |  | B2 | Virtual DI 3(CM.72) |
|  |  |  |  | B1 | Virtual DI 2(CM.71) |
|  |  |  |  | B0 | Virtual DI 1(CM.70) |
| Oh0323 | Display the selected motor | - | - | 0: 1st motor/1: 2 nd motor |  |

ENERTRONICA
SANTERNO

## RS-485 Communication Features



SANTERNO
RS-485 Communication Features

| Comm. Address | Parameter | Scale | Unit | Assigned content by bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | B5 | Error while writing parameter |
|  |  |  |  | B4 | Reserved |
|  |  |  |  | B3 | FAN Trip |
|  |  |  |  | B2 | Reserved |
|  |  |  |  | B1 | Reserved |
|  |  |  |  | B0 | Reserved |
| Oh0332 | Level type trip | - | - | B15 | Reserved |
|  | information |  |  | - | - |
|  |  |  |  | B8 | Reserved |
|  |  |  |  | B7 | Reserved |
|  |  |  |  | B6 | Reserved |
|  |  |  |  | B5 | Reserved |
|  |  |  |  | B4 | Reserved |
|  |  |  |  | B3 | Keypad Lost Command |
|  |  |  |  | B2 | Lost Command |
|  |  |  |  | B1 | LV |
|  |  |  |  | B0 | BX |
| Oh0333 | H/W Diagnosis | - | - | B15 | Reserved |
|  | Trip information |  |  | - | Reserved |
|  |  |  |  | B6 | Reserved |
|  |  |  |  | B5 | Queue Full |
|  |  |  |  | B4 | Reserved |
|  |  |  |  | B3 | Watchdog-2 error |
|  |  |  |  | B2 | Watchdog-1 error |
|  |  |  |  | B1 | EEPROM error |
|  |  |  |  | B0 | ADC error |
| Oh0334 | Warning | - | - | B15 | Reserved |
|  | information |  |  | - | Reserved |
|  |  |  |  | B10 | Reserved |
|  |  |  |  | B9 | Auto Tuning failed |
|  |  |  |  | B8 | Keypad lost |
|  |  |  |  | B7 | Encoder disconnection |
|  |  |  |  | B6 | Wrong installation of encoder |
|  |  |  |  | B5 | DB |
|  |  |  |  | B4 | FAN running |
|  |  |  |  | B3 | Lost command |
|  |  |  |  | B2 | Inverter Overload |
|  |  |  |  | B1 | Underload |
|  |  |  |  | B0 | Overload |

ENERTRONICA
SANTERNO

## RS-485 Communication Features

| Comm. <br> Address | Parameter | Scale | Unit | Assigned content by bit |
| :--- | :--- | :--- | :--- | :--- |
| Oh0335-0h033F | Reserved | - | - | - |
| Oh0340 | On Time date | 0 | Day | Total number of days the inverter has been <br> powered on |
| Oh0341 | On Time minute | 0 | Min | Total number of minutes excluding the total <br> number of On Time days |
| Oh0342 | Run Time date | 0 | Day | Total number of days the inverter has driven <br> the motor |
| Oh0343 | Run Time <br> minute | 0 | Min | Total number of minutes excluding the total <br> number of Run Time days |
| Oh0344 | Fan Time date | 0 | Day | Total number of days the heat sink fan has <br> been running |
| Oh0345 | Fan Time minute | 0 | Min | Total number of minutes excluding the total <br> number of Fan Time days |
| Oh0346 <br> -0h0348 | Reserved | - | - | - |
| Oh0349 | Reserved | - | - | - |
| Oh034A | Option 1 | - | - | 0: None, 9: CANopen |
| Oh034B | Reserved | - | - |  |
| Oh034C | Reserved |  |  |  |

### 7.5.2 Control Area Parameter (Read/ Write)

| Comm. Address | Parameter | Scale | Unit | Assigned Content by Bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oh0380 | Frequency command | 0.01 | Hz | Command frequency setting |  |
| 0h0381 | RPM command | 1 | rpm | Command rpm setting |  |
| Oh0382 | Operation command | - | - | B7 | Reserved |
|  |  |  |  | B6 | Reserved |
|  |  |  |  | B5 | Reserved |
|  |  |  |  | B4 | Reserved |
|  |  |  |  | B3 | $0 \rightarrow 1$ : Free-run stop |
|  |  |  |  | B2 | $0 \rightarrow 1$ :Trip initialization |
|  |  |  |  | B1 | 0 : Reverse command, 1: Forward command |
|  |  |  |  | B0 | 0 : Stop command, 1: Run command |
|  |  |  |  |  | le: Forward operation command 0003h, |

RS-485 Communication Features

| Comm. Address | Parameter | Scale | Unit | Assigned Content by Bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Reverse operation command 0001h |  |
| Oh0383 | Acceleration time | 0.1 | S | Acceleration time setting |  |
| 0h0384 | Deceleration time | 0.1 | S | Deceleration time setting |  |
| Oh0385 | Virtual digital input control (0: Off, 1:On) | - | - | BI5 | Reserved |
|  |  |  |  | - | Reserved |
|  |  |  |  | B8 | Reserved |
|  |  |  |  | B7 | Virtual DI 8(CM.77) |
|  |  |  |  | B6 | Virtual DI 7(CM.76) |
|  |  |  |  | B5 | Virtual DI 6(CM.75) |
|  |  |  |  | B4 | Virtual DI 5(CM.74) |
|  |  |  |  | B3 | Virtual DI 4(CM.73) |
|  |  |  |  | B2 | Virtual DI 3(CM.72) |
|  |  |  |  | B1 | Virtual DI 2(CM.71) |
|  |  |  |  | B0 | Virtual DI 1(CM.70) |
| Oh0386 | Digital output control (0:Off, 1:On) | - | - | BI5 | Reserved |
|  |  |  |  | BI4 | Reserved |
|  |  |  |  | BI3 | Reserved |
|  |  |  |  | BI2 | Reserved |
|  |  |  |  | BI1 | Reserved |
|  |  |  |  | BI0 | Reserved |
|  |  |  |  | B9 | Reserved |
|  |  |  |  | B8 | Reserved |
|  |  |  |  | B7 | Reserved |
|  |  |  |  | B6 | Reserved |
|  |  |  |  | B5 | Reserved |
|  |  |  |  | B4 | Relay 4 (ExtI/O, OUT-31: None) |
|  |  |  |  | B3 | Relay 3 (Ext I/O, OUT-31:None) |
|  |  |  |  | B2 | Relay 2 (0034 model only, OUT-31:None) |
|  |  |  |  | B1 | Q1 (all models, OUT-33: None) |
|  |  |  |  | B0 | Relay 1 (all models, OUT-31: None) |
| Oh0387 | Reserved | - | - | Reserved |  |
| Oh0388 | PID reference | 0.1 | \% | PID reference command |  |
| 0h0389 | PID feedback value | 0.1 | \% | PID feedback value |  |
| Oh038A | Motor rated current | 0.1 | A | - |  |
| 0h038B | Motor rated voltage | 1 | V | - |  |
| $\begin{aligned} & \hline \text { Oh038C- } \\ & \text { Oh038F } \\ & \hline \end{aligned}$ | Reserved |  |  | - |  |
| 0h0390 | Torque Ref | 0.1 | \% | Torque command |  |

## RS-485 Communication Features

| Comm. Address | Parameter | Scale | Unit | Assigned Content by Bit |
| :---: | :---: | :---: | :---: | :---: |
| Oh0391 | Fwd Pos Torque Limit | 0.1 | \% | Forward motoring torque limit |
| Oh0392 | Fwd Neg Torque Limit | 0.1 | \% | Forward regenerative torque limit |
| Oh0393 | Rev Pos Torque Limit | 0.1 | \% | Reverse motoring torque limit |
| Oh0394 | Rev Neg Torque Limit | 0.1 | \% | Reverse regenerative torque limit |
| Oh0395 | Torque Bias | 0.1 | \% | Torque bias |
| Oh0396-0h399 | Reserved | - | - | - |
| Oh039A | Anytime Para | - | - | Set the CNF. $20^{*}$ value (refer to 5.37 Operation State Monitor on page 270) |
| Oh039B | Monitor Line-1 | - | - | Set the CNF. $21^{*}$ value (refer to 5.37 Operation State Monitor on page 270) |
| Oh039C | Monitor Line-2 | - | - | Set the CNF. $22^{*}$ value (refer to 5.37 Operation State Monitor on page 270) |
| Oh039D | Monitor Line-3 | - | - | Set the CNF. $23^{*}$ value (refer to 5.37 Operation State Monitor on page 270) |

* Displayed on an LCD keypad only.


## Note

A frequency set via communication using the common area frequency address (0h0380, Oh0005) is not saved even when used with the parameter save function. To save a changed frequency to use after a power cycle, follow these steps:
1 Set dr. 07 to Keypad-1 and select a random target frequency.
2 Set the frequency via communication into the parameter area frequency address (0h1101).
3 Perform the parameter save (Oh03E0: '1') before turning off the power. After the power cycle, the frequency set before turning off the power is displayed.

### 7.5.3 Inverter Memory Control Area Parameter (Read and Write)

| Comm. <br> Address | Parameter | Scale | Unit | Changeable <br> During <br> Operation | Function |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Oh03E0 | Save parameters | - | - | X | 0: No, 1:Yes |
| Oh03E1 | Monitor mode | - | - | 0 | 0: No, 1:Yes |

SANTERNO
RS-485 Communication Features

| Comm. Address | Parameter | Scale | Unit | Changeable During Operation | Function |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | initialization |  |  |  |  |
| 0h03E2 | Parameter initialization | - | - | X | $\begin{aligned} & \text { 0: No, 1:All Grp, 2: Drv Grp } \\ & \text { 3: bA Grp, 4:Ad Grp, 5: Cn Grp } \\ & \text { 6: In Grp, 7: OU Grp, 8: CM Grp } \\ & \text { 9: AP Grp, 12: Pr Grp, 13: M2 } \\ & \text { Grp } \\ & \text { Setting is prohibited during } \\ & \text { fault trip interruptions. } \end{aligned}$ |
| 0h03E3 | Display changed parameters | - | - | 0 | 0: No, 1:Yes |
| 0h03E4 | Reserved | - | - | - | - |
| 0h03E5 | Delete all fault history | - | - | 0 | 0: No, 1:Yes |
| 0h03E6 | Delete userregistrated codes | - | - | 0 | 0: No, 1:Yes |
| 0h03E7 | Hide parameter | 0 | Hex | 0 | Write: 0-9999 |
|  | mode |  |  |  | Read: 0: Unlock, 1: Lock |
| 0h03E8 | Lock parameter | 0 | Hex | 0 | Write: 0-9999 |
|  | mode |  |  |  | Read: 0: Unlock, 1: Lock |
| 0h03E9 | Easy start on (easy parameter setup mode) | - | - | 0 | 0: No, 1:Yes |
| Oh03EA | Initializing power consumption | - | - | 0 | 0: No, 1:Yes |
| Oh03EB | Initialize inverter operation accumulative time | - | - | 0 | 0: No, 1:Yes |
| 0h03EC | Initialize cooling fan accumulated operation time | - | - | 0 | 0: No, 1:Yes |

## ENERTRONICA <br> SANTERNO

## Note

- When setting parameters in the inverter memory control area, the values are reflected to the inverter operation and saved. Parameters set in other areas via communication are reflected to the inverter operation, but are not saved. All set values are cleared following an inverter power cycle and revert back to its previous values. When setting parameters via communication, ensure that a parameter save is completed prior to shutting the inverter down.
- Set parameters very carefully. After setting a parameter to 0 via communication, set it to another value. If a parameter has been set to a value other than 0 and a non-zero value is entered again, an error message is returned. The previously-set value can be identified by reading the parameter when operating the inverter via communication.
- The addresses 0h03E7 and Oh03E8 are parameters for entering the password. When the password is entered, the condition will change from Lock to Unlock, and vice versa. When the same parameter value is entered continuously, the parameter is executed just once. Therefore, if the same value is entered again, change it to another value first and then re-enter the previous value. For example, if you want to enter 244 twice, enter it in the following order: $244 \rightarrow 0 \rightarrow 244$.


## (1) Caution

It may take longer to set the parameter values in the inverter memory control area because all data is saved to the inverter. Be careful as communication may be lost during parameter setup if parameter setup is continues for an extended period of time.

## 8 Table of Functions

This chapter lists all the function settings for Sinus H series inverter. Set the parameters required according to the following references. If a set value input is out of range, the following messages will be displayed on the keyboard. In these cases, the inverter will not operate with the [ENT] key.

- Set value not allocated: rd
- Set value repetition (multi-function input, PID reference, PID feedback related): OL
- Set value not allowed (select value, V2, I2): no


### 8.1 Operation Group

The Operation group is used only in the basic keypad mode. It will not be displayed on an LCD keypad. If the LCD keypad is connected, the corresponding functions will be found in the Drive(DRV) group.

SL: Sensorless vector control (dr.09) , I IM Sensorless, P - PM Sensorless
*0/X:Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| Code | Comm. Address | Name | $\begin{aligned} & \text { Keypad } \\ & \text { Display } \\ & \hline \end{aligned}$ | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Oh1F00 | Target frequency | 0.00 | 0-Maximum frequency(Hz) | 0.00 | 0/7 | 0 | IP | p. 72 |
| - | Oh1F01 | Acceleration time | ACC | 0.0-600.0(s) | 20.0 | 0/7 | 0 | I/P | p. 141 |
| - | Oh1F02 | Deceleration time | dEC | 0.0-600.0(s) | 30.0 | 0/7 | 0 | I/P | p. 141 |
| - | Oh1F03 | Command source | drv | 0 Keypad <br> 1 Fx/Rx-1 <br> 2 Fx/Rx-2 <br> 3 Int 485 <br> 4 Field <br> Bus | $\begin{aligned} & 1: \\ & \text { Fx/Rx-1 } \end{aligned}$ | X/7 | 0 | I/P | p. 133 |
| - | Oh1F04 | Frequency | Frq | 0 Keypad- | 0: | X/7 | 0 | I/P | 0. 1116 |

${ }^{1}$ Table of options are provided separately in the option manual.

## Table of Functions

| Code | Comm. Address | Name | Keypad Display | Setting Range |  | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | reference source |  |  | 1 | Keypad- <br> 1 |  |  |  |  |
|  |  |  |  |  | $\begin{aligned} & \text { Keypad- } \\ & 2 \end{aligned}$ |  |  |  |  |  |
|  |  |  |  | 2 | V1 |  |  |  |  |  |
|  |  |  |  | 4 | V2 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Int 485 |  |  |  |  |  |
|  |  |  |  | 8 | Field Bus |  |  |  |  |  |
|  |  |  |  | 12 | Pulse |  |  |  |  |  |
| - | Oh1F05 | Multi-step speed frequency 1 | St1 |  | 0-Maximum quency(Hz) | 10.00 | 0/7 | 0 | I/P | p. 131 |
| - | 0h1F06 | Multi-step speed frequency 2 | St2 |  | 0-Maximum quency(Hz) | 20.00 | 0/7 | 0 | I/P | p. 131 |
| - | 0h1F07 | Multi-step speed frequency 3 | St3 |  | 0-Maximum quency(Hz) | 30.00 | 0/7 | 0 | I/P | p. 131 |
| - | Oh1F08 | Output current | CUr |  |  |  | -/7 | 0 | I/P | p. 84 |
| - | Oh1F09 | Motor revolutions per minute | Rpm |  |  |  | -/7 | 0 | I/P | - |
| - | Oh1F0A | Inverter direct current voltage | dCL | - |  | - | -/7 | 0 | I/P | p. 84 |
| - | Oh1F0B | Inverter output voltage | vOL |  |  |  | -/7 | 0 | I/P | p. 84 |
| - | Oh1F0C | Out of order signal | nOn |  |  |  | -/7 | 0 | I/P | - |
| - | Oh1F0D | Select rotation direction | drC |  | Forward run <br> Reverse run | F | 0/7 | 0 | I/P | - |

## ENERTRONICA <br> SANTERNO

### 8.2 Drive group (PAR $\rightarrow \mathrm{dr}$ )

In the following table, data shaded in grey will be displayed when the related code has been selected.

SL: Sensorless vector control (dr.09), I - IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| $\begin{gathered} \hline \text { Code } \\ \text { dr } \\ \hline \end{gathered}$ | Comm Addr | Name | LCD Display | Setting Range |  | Initial value | Property <br> * | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | Jump Code | $\begin{aligned} & \text { Jump } \\ & \text { Code } \end{aligned}$ | 1-99 |  | 9 | O/A | 0 | I/P | p. 72 |
| $01^{2}$ | Oh1101 | Target frequency | Cmd Freque ncy | Start frequency Maximum frequency(Hz) |  | 0.00 | O/L | 0 | I/P | p. 77 |
| 02 | Oh1102 | Torque command | Cmd Torque | -180~180[\%] |  | 0.0 | O/A | X | 1 | - |
| $03^{2}$ | Oh1103 | Acceleratio n time | Acc Time | 0.0-600.0(s) |  | 20.0 | O/L | 0 | I/P | p. 141 |
| $04^{2}$ | Oh1104 | Deceleratio n time | Dec Time | 0.0-600.0(s) |  | 30.0 | O/L | 0 | I/P | p. 141 |
| $06^{2}$ | Oh1106 | Command source | Cmd Source | 0 | Keypad | $\begin{array}{\|l\|} \hline \text { 1: } \\ \text { Fx/Rx-1 } \end{array}$ | X/L | 0 | I/P | p. 133 |
|  |  |  |  | 1 | Fx/Rx-1 |  |  |  |  |  |
|  |  |  |  | 2 | Fx/Rx-2 |  |  |  |  |  |
|  |  |  |  | 3 | Int 485 |  |  |  |  |  |
|  |  |  |  | 4 | Field Bus |  |  |  |  |  |
| $07^{2}$ | Oh1107 | Frequency reference source | Freq Ref Src | 0 | Keypad-1 |  | X/L | 0 | I/P | p. 116 |
|  |  |  |  | 1 | Keypad-2 |  |  |  |  |  |
|  |  |  |  | 2 | V1 |  |  |  |  |  |
|  |  |  |  | 4 | V2 |  |  |  |  |  |
|  |  |  |  | 5 | 12 |  |  |  |  |  |
|  |  |  |  | 6 | Int 485 |  |  |  |  |  |
|  |  |  |  | 8 | Field Bus |  |  |  |  |  |
|  |  |  |  | 12 | Pulse |  |  |  |  |  |
| 08 | Oh1108 | Torque reference setting | Trq Ref Src | 0 | Keypad-1 | $0:$Keypad-1 | X/A | X | I | - |
|  |  |  |  | 1 | Keypad-2 |  |  |  |  |  |
|  |  |  |  | 2 | V1 |  |  |  |  |  |
|  |  |  |  | 4 | V2 |  |  |  |  |  |
|  |  |  |  | 5 | 12 |  |  |  |  |  |
|  |  |  |  | 6 | Int 485 |  |  |  |  |  |
|  |  |  |  | 8 | FieldBus |  |  |  |  |  |
|  |  |  |  | 12 | Pulse |  |  |  |  |  |

[^9]
## Table of Functions

| Code dr | Comm Addr | Name | LCD <br> Display |  |  | Initial value | Property | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 09 | Oh1109 | Control mode | Control Mode | 0 | V/F | 0:V/F | X/A | 0 | I/P | $\begin{aligned} & \mathrm{p} .150 \\ & 1 \\ & \mathrm{p} .194 \\ & \hline \\ & \mathrm{p} .208 \\ & \hline \end{aligned}$ |
|  |  |  |  | 2 | Slip Compen |  |  |  |  |  |
|  |  |  |  | 4 | IM Sensorless |  |  |  |  |  |
|  |  |  |  | 6 | PM Sensorless |  |  |  |  |  |
| 10 | Oh110A | Torque Control | Torque Control | 0 | No | 0: No | X/A | X | I/P | - |
|  |  |  |  | 1 | Yes |  |  |  |  |  |
| 11 | Oh110B | Jog frequency | Jog Freque ncy | 0.00, Start frequencyMaximum frequency(Hz) |  | 10.00 | O/A | 0 | I/P | p. 185 |
| 12 | Oh110C | Jog run acceleratio n time | Jog Acc Time | 0.0-600.0(s) |  | 20.0 | O/A | 0 | I/P | p. 185 |
| 13 | Oh110D | Jog run deceleratio n time | Jog Dec Time | 0.0-600.0(s) |  | 30.0 | O/A | 0 | I/P | p. 185 |
| 14 | Oh110E | Motor capacity | Motor Capacit y | 0: 0.2 kW , <br> 1: 0.4 kW <br> 2: 0.75 kW , <br> 3: 1.1 kW <br> 4: 1.5 kW , <br> 5: 2.2 kW <br> 6: 3.0 kW , <br> 7: 3.7 kW <br> 8: 4.0 kW , <br> 9: 5.5 kW <br> 10: 7.5 kW, <br> 11: 11.0 kW <br> 12: 15.0 kW , <br> 13: 18.5 kW <br> 14: 22.0 kW , <br> 15: 30.0 kW |  | Varies by Motor capacit y | X/A | 0 | I/P | p. 205 |
| 15 | Oh110F | Torque boost options | Torque Boost | 0 | Manual | 0: <br> Manual | X/A | 0 | X | - |
|  |  |  |  |  | Auto |  |  |  |  |  |
| $16^{3}$ | Oh1110 | Forward Torque boost | Fwd Boost | 0.0-15.0(\%) |  | 2.0 | X/A | 0 | X | p. 153 |
| $17^{3}$ | Oh1111 | Reverse Torque boost | Rev Boost |  | 0(\%) | 2.0 | X/A | 0 | X | p. 153 |

[^10]

[^11]
## Table of Functions



## ENERTRONICA

## SANTERNO

| Code dr | Comm Addr | Name | LCD Display |  | Setting Range | Initial value | Property <br> * | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 4 | Ad Grp |  |  |  |  |  |
|  |  |  |  | 5 | Cn Grp |  |  |  |  |  |
|  |  |  |  | 6 | In Grp |  |  |  |  |  |
|  |  |  |  | 7 | OU Grp |  |  |  |  |  |
|  |  |  |  | 8 | CM Grp |  |  |  |  |  |
|  |  |  |  | 9 | AP Grp |  |  |  |  |  |
|  |  |  |  | 12 | Pr Grp |  |  |  |  |  |
|  |  |  |  | 13 | M2 Grp |  |  |  |  |  |
|  |  |  |  | 16 | run Grp |  |  |  |  |  |
| $94^{5}$ | Oh115E | Password registration |  | $\begin{aligned} & 0- \\ & 9999 \end{aligned}$ |  |  | 0/7 | 0 | I/P | p. 247 |
| $95^{5}$ | Oh115F | $\begin{aligned} & \text { Parameter } \\ & \text { lock } \\ & \text { settings } \\ & \hline \end{aligned}$ |  | $\begin{array}{l\|} \hline 0- \\ 9999 \end{array}$ |  |  | 0/7 | 0 | I/P | p. 248 |
| $97^{5}$ | Oh1161 | Software version | - |  |  |  | -/7 | 0 | I/P | - |
| 98 | Oh1162 | $\begin{array}{\|l\|} \hline \text { Display I/O } \\ \text { board } \\ \text { version } \\ \hline \end{array}$ | $\begin{aligned} & \text { IO S/W } \\ & \text { Ver } \end{aligned}$ |  |  |  | -/A | 0 | I/P | - |
| 99 | Oh1163 | Display I/O board H/W version | $\begin{array}{\|l\|} \hline \mathrm{IOH} \mathrm{H} / \mathrm{W} \\ \mathrm{Ver} \end{array}$ | 0 | Multiple IO |  | -/A | 0 | I/P | - |
|  |  |  |  | 1 | Standard IO |  |  |  |  |  |
|  |  |  |  | 2 | Standard IO (M) |  |  |  |  |  |
|  |  |  |  |  | Refer to Step 4 Control Terminal Wiring on page 47. |  |  |  |  |  |

## ENERTRONICA <br> SANTERNO

## Table of Functions

### 8.3 Basic Function group (PAR $\rightarrow$ bA)

In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control function (dr.09) , I - IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common


[^12]Table of Functions

| Code <br> bA | CommA <br> ddr | Name | LCD <br> Display | Setting Range |  | Initial <br> Value | Property* | V/F | SL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Table of Functions

| Code bA | $\begin{gathered} \text { CommA } \\ \text { ddr } \\ \hline \end{gathered}$ | Name | $\overline{L C D}$ Display | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | inertia rate | Rate |  |  |  |  |  |  |
| 18 | Oh1212 | Trim power display | Trim Power \% | 70-130(\%) | 100 | O/A | 0 | I/P | - |
| 19 | Oh1213 | Input power voltage | AC Input Volt | 170-480V | $\begin{aligned} & 230 / 400 \\ & \mathrm{~V} \end{aligned}$ | O/A | 0 | I/P | p. 245 |
| 20 | Oh1214 | Auto Tuning | Auto Tuning | 0 None <br> 1 All (Rotation <br> type) <br> 2 ALL (Static <br> type) <br> 3 Rs+Lsigma <br> (Rotation <br> type) <br> 6 Tr (Static type) <br> 7 All PM | 0:None | X/A | X | I/P | p. 205 |
| 21 | Oh1215 | Stator resistance | Rs |  | Depende | X/A | X | I/P | p. 205 |
| 22 | Oh1216 | Leakage inductance | Lsigma | Dependent on motor setting | nt on motor | X/A | X | I | p. 205 |
| 23 | Oh1217 | Stator inductance | LS |  | setting | X/A | X | I | p. 205 |
| $24^{7}$ | Oh1218 | Rotor time constant | Tr | 25-5000(ms) |  | X/A | X | I | p. 205 |
| $25^{7}$ | Oh1219 | Stator inductance scale | Ls Scale | 50-150[\%] | 100 | X/A | X | I | - |
| $26^{7}$ | Oh121A | Rotor time constant scale | Tr Scale | 50-150[\%] | 100 | X/A | X | I | - |
| $28^{8}$ | $\begin{aligned} & \hline \text { Oh121C } \\ & \text { [R/O] } \end{aligned}$ | D-axis inductance | Ld (PM) | Settings vary | 0 | X/A | X | P | - |
| $29^{8}$ | $\begin{array}{\|l\|} \hline \text { Oh121D } \\ \text { [R/O] } \\ \hline \end{array}$ | Q-axis inductance | Lq (PM) | depending on the motor | 0 | X/A | X | P | - |
| $30^{8}$ | $\begin{array}{\|l} \hline \text { Oh121E } \\ \text { [R/O] } \\ \hline \end{array}$ | Flux reference | $\begin{aligned} & \hline \text { PM Flux } \\ & \text { Ref } \end{aligned}$ | specifications. | 0.147 | X/A | X | P | - |
| $31^{7}$ | Oh121F | Regeneration inductance scale | Ls Regen Scale | 70-100[\%] | 80 | X/A | X | 1 | - |

[^13]Table of Functions

| $\begin{gathered} \hline \text { Code } \\ \text { bA } \end{gathered}$ | $\underset{\mathrm{ddr}}{\mathrm{Com}}$ | Name | $\begin{gathered} \hline \text { LCD } \\ \text { Display } \end{gathered}$ | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $32^{8}$ | $\begin{aligned} & \text { Oh1220 } \\ & \text { [R/O] } \end{aligned}$ | Q-axis <br> inductance <br> scale | Lq(PM) Scale | 50-150[\%] | 100 | X/A | X | P | - |
| $34^{8}$ | $\begin{aligned} & \text { Oh1222 } \\ & \text { [R/O] } \end{aligned}$ | PM auto tuning level | Ld,Lq Tune Lev | 20.0-50.0[\%] | 33.3 | X/A | X | P | - |
| $35^{8}$ | $\begin{aligned} & \text { Oh1223 } \\ & \text { [R/O] } \end{aligned}$ | PM auto tuning frequency | Ld, Lq Tune Hz | 80.0-150.0[\%] | 150.0 | X/A | x | P | - |
| $41^{9}$ | Oh1229 | User frequency1 | $\begin{aligned} & \text { User Freq } \\ & 1 \end{aligned}$ | 0.00-Maximum frequency(Hz) | 15.00 | X/A | 0 | X | p. 152 |
| $42^{9}$ | Oh122A | User voltagel | User Volt 1 | 0-100(\%) | 25 | X/A | 0 | X | p. 152 |
| $43^{9}$ | Oh122B | User frequency2 | User Freq <br> 2 | 0.00-0.00- <br> Maximum frequency(Hz) | 30.00 | X/A | 0 | X | p. 152 |
| $44^{9}$ | Oh122C | User voltage2 | User Volt 2 | 0-100(\%) | 50 | X/A | 0 | X | p. 152 |
| $45^{9}$ | Oh122D | User frequency3 | User Freq <br> 3 | 0.00-Maximum frequency(Hz) | 45.00 | X/A | 0 | X | p. 152 |
| $46^{9}$ | Oh122E | User voltage3 | User Volt 3 | 0-100(\%) | 75 | X/A | 0 | X | p. 152 |
| $47^{9}$ | Oh122F | User frequency4 | User Freq <br> 4 | 0.00-Maximum frequency(Hz) | Maximu <br> m <br> frequenc <br> y | X/A | 0 | x | p. 152 |
| $48^{9}$ | Oh1230 | User voltage4 | User Volt 4 | 0-100(\%) | 100 | X/A | 0 | X | p. 152 |
| $50^{10}$ | Oh1232 | Multi-step speed frequency1 | Step Freq- <br> 1 | 0.00-Maximum frequency(Hz) | 10.00 | 0/L | 0 | I/P | p. 13 |
| $51^{10}$ | Oh1233 | Multi-step speed frequency2 | Step Freq- <br> 2 | 0.00-Maximum frequency(Hz) | 20.00 | 0/L | 0 | I/P | p. 131 |
| $52^{10}$ | Oh1234 | Multi-step speed frequency3 | Step Freq- <br> 3 | 0.00-Maximum frequency(Hz) | 30.00 | 0/L | 0 | I/P | p. 131 |
| $53^{11}$ | Oh1235 | Multi-step | Step Freq- | 0.00-Maximum | 40.00 | O/A | 0 | I/P | p. 131 |

${ }^{9}$ Displayed if either bA. 07 or M2.25 is set to 2 (UserV/F).
${ }^{10}$ Displayed when an LCD keypad is in use.
${ }^{11}$ Displayed if one of In.65-71 is set to Speed-L/M/H

## Table of Functions

| Code bA | $\begin{gathered} \text { CommA } \\ \text { ddr } \end{gathered}$ | Name | LCD Display | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | speed frequency4 | 4 | frequency(Hz) |  |  |  |  |  |
| $54^{11}$ | Oh1236 | Multi-step speed frequency5 | Step Freq- $5$ | 0.00-Maximum frequency(Hz) | 50.00 | O/A | 0 | I/P | p. 131 |
| $55^{11}$ | Oh1237 | Multi-step speed frequency6 | Step Freq- 6 | 0.00-Maximum frequency(Hz) | Maximu m frequenc y | O/A | 0 | I/P | p. 131 |
| $56^{11}$ | Oh1238 | Multi-step speed frequency7 | Step Freq- $7$ | 0.00-Maximum frequency(Hz) | Maximu m frequenc y | O/A | 0 | I/P | p. 131 |
| 70 | Oh1246 | Multi-step acceleration timel | Acc Time- $1$ | 0.0-600.0(s) | 20.0 | O/A | 0 | I/P | p. 144 |
| 71 | Oh1247 | Multi-step deceleration timel | Dec Time1 | 0.0-600.0(s) | 20.0 | O/A | 0 | I/P | p. 144 |
| $72^{12}$ | Oh1248 | Multi-step acceleration time2 | Acc Time- $2$ | 0.0-600.0(s) | 30.0 | O/A | 0 | I/P | p. 144 |
| $73^{12}$ | Oh1249 | Multi-step deceleration time2 | Dec Time- $2$ | 0.0-600.0(s) | 30.0 | O/A | 0 | I/P | p. 144 |
| $74^{12}$ | Oh124A | Multi-step acceleration time3 | Acc Time3 | 0.0-600.0(s) | 40.0 | O/A | 0 | I/P | p. 144 |
| $75^{12}$ | Oh124B | Multi-step deceleration time3 | Dec Time3 | 0.0-600.0(s) | 40.0 | O/A | 0 | I/P | p. 144 |
| $76^{12}$ | Oh124C | Multi-step acceleration time4 | Acc Time- $4$ | 0.0-600.0(s) | 50.0 | O/A | 0 | I/P | p. 144 |
| $77^{12}$ | Oh124D | Multi-step deceleration time4 | Dec Time- $4$ | 0.0-600.0(s) | 50.0 | O/A | 0 | I/P | p. 144 |
| $78^{12}$ | Oh124E | Multi-step acceleration time5 | Acc Time5 | 0.0-600.0(s) | 40.0 | O/A | 0 | I/P | p. 144 |
| $79^{12}$ | Oh124F | Multi-step | Dec Time- | 0.0-600.0(s) | 40.0 | O/A | 0 | I/P | p. 144 |

${ }^{12}$ Displayed if one of $\operatorname{In} .65-71$ is set to Xcel-L/M/H.

| Code bA | CommA <br> ddr | Name | LCD Display | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | deceleration time5 | 5 |  |  |  |  |  |  |
| $80^{12}$ | Oh1250 | Multi-step acceleration time6 | Acc Time6 | 0.0-600.0(s) | 30.0 | O/A | 0 | I/P | p. 144 |
| $81^{12}$ | Oh1251 | Multi-step deceleration time6 | Dec Time- $6$ | 0.0-600.0(s) | 30.0 | O/A | 0 | I/P | p. 144 |
| $82^{12}$ | Oh1252 | Multi-step acceleration time7 | Acc Time7 | 0.0-600.0(s) | 20.0 | O/A | 0 | I/P | p. 144 |
| $83^{12}$ | Oh1253 | Multi-step deceleration time7 | $\begin{aligned} & \text { Dec Time- } \\ & 7 \end{aligned}$ | 0.0-600.0(s) | 20.0 | O/A | 0 | I/P | p. 144 |

### 8.4 Expanded Function group (PAR $\rightarrow$ Ad)

In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control (dr.09) , I IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| $\begin{gathered} \hline \text { Code } \\ \mathrm{Ad} \\ \hline \end{gathered}$ | Comm. Addr | Name | $\overline{\mathrm{LCD}}$ Display | Setting Range |  | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | Jump Code | Jump Code | 1-99 |  | 24 | O/A | 0 | I/P | p. 72 |
| 01 | Oh1301 | Acceleration pattern | Acc Pattern | 0 | Linear | 0: Linear | X/A | 0 | I/P | p. 147 |
| 02 | Oh1302 | Deceleration pattern | Dec Pattern | 1 | S-curve |  | X/A | 0 | I/P | p. 147 |
| $03^{13}$ | Oh1303 | S-curve acceleration start point gradient | Acc S Start | 1-100(\%) |  | 40 | X/A | 0 | I/P | p. 147 |
| $04^{13}$ | Oh1304 | S-curve acceleration end point gradient | Acc S <br> End |  | 00(\%) | 40 | X/A | 0 | I/P | p. 147 |

[^14]
## Table of Functions


${ }^{14}$ Displayed when Ad. 02 is set to 1 (S-curve).
${ }^{15} \mathrm{DC}$ braking and power braking (Ad. 08 , stop mode options 1 and 4 ) are not available when dr. 09 (Control Mode) is set to 6 (PM Sensorless).
${ }^{16}$ Displayed when Ad. 07 is set to 1 (DC-Start).
${ }^{17}$ Displayed when Ad. 08 is set to 1 (DC-Brake).

| Code Ad | Comm. Addr | Name | LCD Display | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $16^{17}$ | Oh1310 | $\begin{aligned} & \text { DC braking } \\ & \text { rate } \end{aligned}$ | DC-Brake Level | 0-200(\%) | 50 | X/A | 0 | I/P | p. 157 |
| $17^{17}$ | Oh1311 | DC braking frequency | DC-Brake Freq | Start frequency60 Hz | 5.00 | X/A | 0 | I/P | p. 157 |
| 20 | Oh1314 | Dwell frequency on acceleration | Acc Dwell Freq | Start frequencyMaximum frequency(Hz) | 5.00 | X/A | 0 | I/P | p. 192 |
| 21 | Oh1315 | Dwell operation time on acceleration | Acc Dwell Time | 0.0-60.0(s) | 0.0 | X/A | 0 | I/P | p. 192 |
| 22 | Oh1316 | Dwell frequency on deceleration | Dec Dwell Freq | Start frequencyMaximum frequency $(\mathrm{Hz})$ | 5.00 | X/A | 0 | I/P | p. 192 |
| 23 | Oh1317 | Dwell operation time on deceleration | Dec Dwell Time | 0.0-60.0(s) | 0.0 | X/A | 0 | I/P | p. 192 |
| 24 | Oh1318 | Frequency limit | Freq Limit | 0 No <br> 1 Yes | 0:No | X/A | 0 | I/P | p. 161 |
| $25^{18}$ | Oh1319 | Frequency lower limit value | Freq Limit Lo | $\begin{aligned} & \text { 0.00-Upper } \\ & \text { limit } \\ & \text { frequency(Hz) } \end{aligned}$ | 0.50 | O/A | 0 | I/P | p. 161 |
| $26^{18}$ | 0h131A | Frequency upper limit value | Freq Limit Hi | Lower limit frequencyMaximum frequency $(\mathrm{Hz})$ | maximum frequency | X/A | 0 | I/P | p. 161 |
| 27 | Oh131B | Frequency jump | Jump Freq | 0 No <br> 1 Yes | 0:No | X/A | 0 | I/P | p. 162 |
| $28^{19}$ | Oh131C | Jump frequency lower limit1 | Jump Lo 1 | 0.00-Jump frequency upper limit1(Hz) | 10.00 | O/A | 0 | I/P | p. 162 |
| $29^{19}$ | 0h131D | Jump frequency upper limit1 | Jump Hi 1 | Jump frequency lower limit1- | 15.00 | O/A | 0 | I/P | p. 162 |

[^15]
## Table of Functions

| $\begin{gathered} \hline \text { Code } \\ \text { Ad } \\ \hline \end{gathered}$ | Comm. <br> Addr | Name | $\overline{\mathrm{LCD}}$ Display | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Maximum frequency $(\mathrm{Hz})$ |  |  |  |  |  |
| $30^{19}$ | Oh131E | Jump frequency lower limit2 | Jump Lo 2 | 0.00-Jump frequency upper limit2(Hz) | 20.00 | O/A | 0 | I/P | p. 162 |
| $31^{19}$ | Oh131F | Jump frequency upper limit2 | Jump Hi 2 | Jump frequency lower limit2Maximum frequency $(\mathrm{Hz})$ | 25.00 | O/A | 0 | I/P | p. 162 |
| $32^{19}$ | Oh1320 | Jump frequency lower limit3 | Jump Lo 3 | $\begin{aligned} & \text { 0.00-Jump } \\ & \text { frequency } \\ & \text { upper } \\ & \text { limit } 3(\mathrm{~Hz}) \end{aligned}$ | 30.00 | O/A | 0 | I/P | p. 162 |
| $33^{19}$ | Oh1321 | Jump frequency upper limit3 | Jump Hi 3 | Jump frequency lower limit3Maximum frequency $(\mathrm{Hz})$ | 35.00 | O/A | 0 | I/P | p. 162 |
| $41^{20}$ | Oh1329 | Brake release current | BR Rls Curr | 0.0-180.0(\%) | 50.0 | O/A | 0 | I/P | p. 254 |
| $42^{20}$ | Oh132A | Brake release delay time | BR RIs Dly | 0.00-10.00(s) | 1.00 | X/A | 0 | I/P | p. 254 |
| $44^{20}$ | Oh132C | Brake release Forward frequency | BR RIS Fwd Fr | 0.00-Maximum frequency(Hz) | 1.00 | X/A | 0 | I/P | p. 254 |
| $45^{20}$ | Oh132D | Brake release Reverse frequency | BR RIs Rev Fr | 0.00-Maximum frequency(Hz) | 1.00 | X/A | 0 | I/P | p. 254 |
| $46^{20}$ | Oh132E | Brake engage delay time | BR Eng Dly | 0.00-10.00(s) | 1.00 | X/A | 0 | I/P | p. 254 |
| $47^{20}$ | Oh132F | Brake engage frequency | BR Eng Fr | 0.00-Maximum frequency(Hz) | 2.00 | X/A | 0 | I/P | p. 254 |
| 50 | Oh1332 | Energy saving operation | E-Save Mode | 0 None <br> 1 Manual <br> 2 Auto | 0:None | X/A | 0 | X | p. 229 |
| $51^{21}$ | Oh1333 | Energy saving level | Energy Save | 0-30(\%) | 0 | O/A | 0 | X | p. 229 |
| 60 | Oh133C | Acc/Dec time transition | Xcel Change Fr | 0.00-Maximum frequency(Hz) | 0.00 | X/A | 0 | I/P | p. 146 |

[^16]| Code Ad | Comm. Addr | Name | LCD Display | Setting Range |  | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61 |  | frequency | Load Spd Gain |  |  |  |  |  |  |  |
|  | Oh133D | Rotation count speed gain |  | 0.1~6000.0[\%] |  | 100.0 | O/A | 0 | I/P | - |
| 62 | Oh133E | Rotation count speed scale | Load Spd Scale | 0 | x 1 | 0: $\times 1$ | O/A | 0 | I/P | - |
|  |  |  |  | 1 | x 0.1 |  |  |  |  |  |
|  |  |  |  | 2 | $\times 0.01$ |  |  |  |  |  |
|  |  |  |  | 3 | $\times 0.001$ |  |  |  |  |  |
|  |  |  |  | 4 | $\times 0.0001$ |  |  |  |  |  |
|  |  | Rotation | Load Spd | 0 | Rpm |  |  |  |  |  |
| 63 | Oh133F | count speed unit | Unit | 1 | mpm | 0: rpm | O/A | 0 | I/P | - |
|  |  |  |  | 0 | During Run |  |  |  |  |  |
| 64 | Oh1340 | Cooling fan | FAN | 1 | Always ON | $0:$ During | O/A | 0 | I/P | p. 244 |
|  | 0 | control | Control | 2 | Temp Control |  |  | 0 | I/P | p. 244 |
|  |  | Up/down |  | 0 | No |  |  |  |  |  |
| 65 | Oh1341 | operation frequency save | Mode | 1 | Yes | O:No | O/A | 0 | I/P | p. 188 |
|  |  |  |  | 0 | None |  |  |  |  |  |
|  |  | contact |  | 1 | V1 |  |  |  |  |  |
| 66 | Oh1342 | On/Off control | Ctrl Src | 3 | V2 | 0:None | X/A | 0 | I/P | p. 188 |
|  |  | options |  | 4 | 12 |  |  |  |  |  |
|  |  |  |  | 6 | Pulse |  |  |  |  |  |
| 67 | Oh1343 | Output contact On level | On-Ctrl Level |  | tput ntact off el- 100.00\% | 90.00 | X/A | 0 | I/P | p. 256 |
| 68 | Oh1344 | $\begin{array}{\|l\|} \hline \text { Output } \\ \text { contact Off } \\ \text { level } \\ \hline \end{array}$ | Off-Ctrl Level |  | 0.00-output ntact on el (\%) | 10.00 | X/A | 0 | I/P | p. 256 |
| 70 | Oh1346 | Safe operation | Run En | 0 | Always Enable | $0: A l w a y s$ | X/A | 0 | I/P | p. 190 |
| 70 | 0 L 1346 | selection | Mode | 1 | DI Dependent | Enable |  | 0 |  | p.190 |
|  |  |  |  | 0 | Free-Run |  |  |  |  |  |
| $71^{22}$ | Oh1347 | Safe operation | Run Dis | 1 | Q-Stop | 0:Free- | X/A | 0 | I/P | p. 190 |
|  | 0 1347 | stop options | Stop | 2 | $\begin{aligned} & \text { Q-Stop } \\ & \text { Resume } \end{aligned}$ | Run | X/A | 0 | I/P | p. 190 |
| $72^{22}$ | Oh1348 | Safe operation deceleration | Q-Stop <br> Time |  | -600.0(s) | 5.0 | O/A | 0 | I/P | p. 190 |

${ }^{22}$ Displayed when Ad. 70 is set to 1 (DI Dependent).

## Table of Functions


${ }^{23}$ Displayed when dr. 09 (Control Mode) is not set to 6 (PM Sensorless).
${ }^{24}$ Displayed when Ad. 74 is set to 1 (Yes).
${ }^{25}$ DC voltage value (convert bA. 19 AC Input voltage) +20 V (2S/T type) or +40 V (4T type)
${ }^{26}$ Displayed when Ad. 80 is set to 1 (Yes).

| Code <br> Ad | Comm. <br> Addr | Name | LCD <br> Display | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Count | Cnt | modified |  |  |  |  |  |

### 8.5 Control Function group (PAR $\rightarrow \mathrm{Cn}$ )

In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control (dr.09) , I IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| $\begin{gathered} \hline \text { Code } \\ \mathrm{Cn} \\ \hline \end{gathered}$ | Comm Addr | Name | LCD Display | Setting Range |  | Initial Value | Property <br> * | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | Jump Code | Jump Code | 1-99 |  | 4 | O/A | 0 | I/P | p. 72 |
| 04 | Oh1404 | Carrier frequency | Carrier Freq | Heavy Duty | V/F: $1.0-$ $15.0(\mathrm{kHz})$ 27 $\mathrm{SL:}$ $2.0-$ $15.0(\mathrm{kHz})$ | 3.0 | X/A | 0 | I/P | p. 240 |
|  |  |  |  | $\begin{aligned} & \text { Norma } \\ & \text { Duty } \end{aligned}$ | $\begin{aligned} & \text { V/F: } \\ & 1.0-5.0 \\ & (\mathrm{kHz})^{29} \\ & \text { SL: } \\ & 2.0- \\ & 5.0(\mathrm{kHz}) \\ & \hline \end{aligned}$ | 2.0 |  |  |  | p. 240 |
| 05 | Oh1405 | Switching mode | PWM Mode | 0 | Normal PWM | $0:$ Normal PWM | X/A | 0 | I | p. 240 |
|  |  |  |  | 1 | Lowleaka ge PWM |  |  |  |  |  |
| $09^{30}$ | Oh1409 | Initial excitation time | PreExTim <br> e | 0.00-60.00(s) |  | 1.00 | X/A | X | I | p. 212 |

${ }^{27}$ In case of $0.4 \sim 4.0 \mathrm{~kW}$, the setting range is $2.0 \sim 15.0(\mathrm{kHz})$.
${ }^{28} \mathrm{PM}$ synchronous motor sensorless vector control mode does not support normal duty operation [when dr. 09 (Control Mode) is set to 6 (PM Sensorless)].
${ }^{29}$ In case of $0.4 \sim 4.0 \mathrm{~kW}$, the setting range is $2.0 \sim 5.0(\mathrm{kHz})$.
${ }^{30}$ Displayed when dr. 09 (Control Mode) is not set to 6 (PM Sensorless).

SANTERNO
Table of Functions

| Code Cn | Comm Addr | Name | $\begin{array}{c\|} \hline \text { LCD } \\ \text { Display } \\ \hline \end{array}$ | Setting Range |  | Initial Value | Property * | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{30}$ | Oh140A | Initial excitation amount | Flux Force | 100.0-300.0(\%) |  | 100.0 | X/A | X | I | p. 212 |
| $11^{30}$ | Oh140B | Continued operation duration | Hold Time | 0.00-60.00(s) |  | 0.00 | X/A | X | I | p. 212 |
| $12^{31}$ | Oh140D | PM S/L speed controller proportional gain1 | $\begin{aligned} & \text { ASR P } \\ & \text { Gain } 1 \end{aligned}$ | 0~5000 |  | 100 | X/A | X | P |  |
| $13^{31}$ | Oh140F | PM S/L speed controller integral gain1 | $\begin{aligned} & \text { ASR P } \\ & \text { Gain } 1 \end{aligned}$ | 0~5000 |  | 150 | X/A | X | P |  |
| $15^{31}$ | Oh1410 | PM S/L speed controller proportional gain2 | $\begin{aligned} & \text { ASR P } \\ & \text { Gain } 1 \end{aligned}$ | 0~5000 |  | 100 | X/A | X | P |  |
| $16^{31}$ | Oh1410 | PM S/L speed controller integral gain2 | $\begin{aligned} & \text { ASR P } \\ & \text { Gain } 1 \end{aligned}$ | 0~9999 |  | 150 | X/A | X | P |  |
| $20^{30}$ | Oh1414 | $\begin{aligned} & \begin{array}{l} \text { Sensorless 2 } \\ \text { nd } \\ \text { gain display } \\ \text { setting } \end{array} \\ & \hline \end{aligned}$ | SL2 G <br> View Sel | 0 | No |  |  |  |  |  |
|  |  |  |  |  | Yes | O:No | O/A | X | I | p. 212 |
| $21^{30}$ | Oh1415 | Sensorless speed controller proportional gain1 | $\begin{aligned} & \text { ASR-SL } \\ & \text { P Gain1 } \end{aligned}$ | 0-5000(\%) |  | Dependent on motor setting | O/A | X | I | p. 212 |
| $22^{30}$ | Oh1416 | Sensorless speed controller integral gain1 | ASR-SLI Gain1 | 10-9999(ms) |  |  | O/A | X | I | p. 212 |
| $23^{32}$ | Oh1417 | Sensorless speed controller proportional | $\begin{aligned} & \text { ASR-SL } \\ & \text { P Gain2 } \end{aligned}$ | 1.0-1000.0(\%) |  | Dependent on motor setting | O/A | X | I | p. 212 |

${ }^{31}$ Displayed when dr. 09 (Control Mode) is set to 6 (PM Sensorless).
${ }^{32}$ Displayed when dr. 09 is set to 4 (IM Sensorless) and Cn. 20 is set to 1 (YES).

## ENERTRONICA <br> SANTERNO

| Code Cn | Comm Addr | Name | LCD Display | Setting Range | Initial Value |  |  | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | gain2 |  |  |  |  |  |  |  |
| $24^{32}$ | Oh1418 | Sensorless speed controller integral gain2 | ASR-SLI Gain2 | 1.0-1000.0(\%) |  | O/A | X | I | p. 212 |
| $25^{32}$ | Oh1419 | Sensorless speed controller integral gain 0 | ASR-SLI Gain0 | 1.0~999.9(ms) |  | O/A | X | I | - |
| $26^{32}$ | Oh141A | Flux estimator proportional gain | Flux $P$ Gain | 10-200(\%) |  | O/A | X | I | p. 212 |
| $27^{32}$ | Oh141B | Flux estimator integral gain | FluxI Gain | 10-200(\%) |  | O/A | X | I | p. 212 |
| $28^{32}$ | Oh141C | Speed estimator proportional gain | S-Est P Gain1 | 0-32767 |  | O/A | X | I | p. 212 |
| $29^{32}$ | Oh141D | Speed estimator integral gain1 | S-Est I Gain1 | 100-1000 |  | O/A | X | I | p. 212 |
| $30^{32}$ | Oh141E | Speed estimator integral gain2 | S-Est I Gain2 | 100-10000 |  | O/A | X | I | p. 212 |
| $31^{32}$ | Oh141F | Sensorless current controller proportional gain | ACR SL <br> P Gain | 10-1000 |  | O/A | X | I | p. 212 |
| $32^{32}$ | Oh1420 | Sensorless current controller integral gain | ACR SLI Gain | 10-1000 |  | O/A | X | I | p. 212 |
| $33^{33}$ | Oh1421 | PM D-axis back-EMF estimation gain [\%] | PM EdGain Perc | 0~300.0[\%] | 100.0 | X/A | X | P | - |
| $34^{33}$ | Oh1422 | PM Q-axis back-EMF estimation gain [\%] | PM <br> EqGain Perc | 0~300.0[\%] | 100.0 | X/A | X | P | - |

${ }^{33}$ Displayed when dr. 09 (Control Mode) is set to 6 (PM Sensorless).

Table of Functions

| Code Cn | Comm Addr | Name | $\begin{array}{c\|} \hline \text { LCD } \\ \text { Display } \\ \hline \end{array}$ | Setting Range | Initial Value | Property * | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $35^{33}$ | Oh1423 | Initial pole position detection retry number | PD Repeat Num | 0~10 | 2 | X/A | X | P | - |
| $36^{33}$ | Oh1424 | Initial pole position detection pulse interval | Pulse Interval | 1~100 | 20 | X/A | X | P | - |
| $37^{33}$ | Oh1425 | Initial pole position detection current level [\%] | Pulse Curr \% | 10~100 | 15 | X/A | X | P | - |
| $38^{33}$ | Oh1426 | Initial pole position detection voltage level [\%] | Pulse <br> Volt \% | 100~4000 | 500 | X/A | X | P | - |
| $39^{33}$ | Oh1427 | PM dead time range[\%] | PMdead Band Per | 50.0~100.0 | 100.0 | X/A | X | P | - |
| $40^{33}$ | Oh1428 | PM dead time voltage [\%] | Pmdead Volt Per | 50.0~100.0 | 100.0 | X/A | X | P | - |
| $41^{33}$ | Oh1429 | Speed estimator $P$ gain1 | PM <br> SpdEst <br> Kp | 0~32000 | 100 | X/A | X | P | - |
| $42^{33}$ | Oh142A | Speed estimator I gain1 | PM <br> SpdEst <br> Ki | 0~32000 | 10 | X/A | X | P | - |
| $43^{33}$ | Oh142B | Speed estimator $P$ gain2 | PM SpdEst Kp 2 | 0~32000 | 300 | X/A | X | P | - |
| $44^{33}$ | Oh142C | Speed estimator I gain2 | PM SpdEst Ki 2 | 0~32000 | 30 | X/A | X | P | - |
| $45^{33}$ | Oh142D | Speed estimator feed forward high speed rate [\%] | PM Flux FF \% | 0~100[\%] | 30.0 | X/A | X | P | - |
| $46^{33}$ | Oh142E | Initial pole position detection options | Init <br> Angle <br> Sel | 0 None <br> 1 Angle <br> 2 Align | 1 | X/A | X | P | - |
| $48^{33}$ | Oh1430 | Current | ACRP | 0-10000 | 1200 | O/A | X | I/P | - |


| Code Cn | Comm Addr | Name | LCD Display | Setting Range |  | Initial Value | Prop | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | controller P gain | Gain |  |  |  |  |  |  |  |
| $49^{33}$ | Oh1431 | Current controller I gain | $\begin{aligned} & \text { ACRI } \\ & \text { Gain } \end{aligned}$ | 0-10000 |  | 120 | O/A | X | I/P | - |
| $50^{33}$ | Oh1432 | Voltage controller limit | $\begin{aligned} & \hline \text { VCon } \\ & \text { HR } \end{aligned}$ | 0~100.0[\%] |  | 10.0 | X/A | X | P | - |
| $51^{33}$ | Oh1433 | Voltage controller I gain | V Con Ki | 0~1000.0[\%] |  | 10.0 | X/A | X | P | - |
| 52 | Oh1434 | Torque controller output filter | Torque Out LPF | 0-2000(ms) |  | 0 | X/A | X | I/P | p. 212 |
| 53 | Oh1435 | Torque limit setting options | Torque <br> Lmt Src | 0 | Keypad-1 | $\begin{aligned} & 0: \\ & \text { Keypad-1 } \end{aligned}$ | X/A | X | I/P | p. 212 |
|  |  |  |  |  | Keypad-2 |  |  |  |  |  |
|  |  |  |  |  | V1 |  |  |  |  |  |
|  |  |  |  | 4 | V2 |  |  |  |  |  |
|  |  |  |  | 5 | 12 |  |  |  |  |  |
|  |  |  |  |  | Int 485 |  |  |  |  |  |
|  |  |  |  |  | FieldBus |  |  |  |  |  |
|  |  |  |  |  | Pulse |  |  |  |  |  |
| $54^{34}$ | Oh1436 | Positivedirection reverse torque limit | $\begin{aligned} & \text { FWD } \\ & + \text { Trq } \\ & \text { Lmt } \end{aligned}$ | 0.0-200.0(\%) |  | 180 | 0/A | X | I/P | p. 212 |
| $55^{34}$ | Oh1437 | Positivedirection regeneration torque limit | $\begin{aligned} & \text { FWD } \\ & \text {-Trq } \\ & \text { Lmt } \end{aligned}$ | 0.0-200.0(\%) |  | 180 | 0/A | X | I/P | p. 212 |
| $56^{34}$ | Oh1438 | Negativedirection regeneration torque limit | $\begin{aligned} & \text { REV } \\ & + \text { Trq } \\ & \text { Lmt } \end{aligned}$ | 0.0-200.0(\%) |  | 180 | O/A | X | I/P | p. 212 |
| $57^{34}$ | Oh1439 | Negativedirection reverse torque limit | $\begin{array}{\|l} \hline \text { REV } \\ \text {-Trq } \\ \text { Lmt } \end{array}$ | 0.0-200.0(\%) |  | 180 | 0/A | X | I/P | p. 212 |
| $62^{34}$ | Oh143E | Speed limit Setting | Speed Lmt Src | 0 | Keypad-1 | $\begin{aligned} & 0: \\ & \text { Keypad-1 } \end{aligned}$ | X/A | X | I/P | - |
|  |  |  |  | 1 | Keypad-2 |  |  |  |  |  |
|  |  |  |  | 2 | V1 |  |  |  |  |  |
|  |  |  |  | 4 | V2 |  |  |  |  |  |
|  |  |  |  | 5 | 12 |  |  |  |  |  |
|  |  |  |  |  | Int 485 |  |  |  |  |  |

${ }^{34}$ Displayed when dr. 09 is set to 4 (IM Sensorless). This will change the initial value of the parameter at Ad. 74 (Torque limit) to $150 \%$.

## Table of Functions

| Code Cn | Comm Addr | Name | $\begin{array}{\|c\|} \hline \text { LCD } \\ \text { Display } \\ \hline \end{array}$ | Setting Range |  | Initial Value | Property | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 7 | FieldBus |  |  |  |  |  |
| $63^{34}$ | Oh143F | Positivedirection speed limit | FWD Speed Lmt | 0.00~Maximum frequency (Hz) |  | 50.00 | O/A | X | I/P | - |
| $64^{34}$ | Oh1440 | Negativedirection speed limit | REV Speed Lmt | 0.00~Maximum frequency (Hz) |  | 50.00 | O/A | X | I/P | - |
| $65^{34}$ | Oh1441 | Speed limit operation gain | Speed Lmt Gain | 100~5000[\%] |  | 500 | O/A | X | I/P | - |
| $69^{35}$ | Oh1445 | PM speed search current | SS Pulse Curr | 10~100 |  | 15 | O/A | X | P | - |
| 70 | Oh1446 | Speed search mode selection | SS Mode | 0 <br> 1 <br> 2 | Flying Start- <br> $1^{36}$ <br> Flying Start- <br> 2 <br> Flying Start- <br> $3^{35}$ | 0 : <br> Flying <br> Start-1 | X/A | 0 | I/P | p. 234 |
| 71 | Oh1447 | Speed search operation selection | Speed Search | $\begin{array}{\|l\|} \hline \text { bit } \\ \hline \\ 000 \\ 1 \end{array}$ | 0000-1111 <br> Selection of speed search on acceleration | $0000{ }^{37}$ | X/A | 0 | I/P | p. 234 |
|  |  |  |  | $\begin{array}{\|l\|l} \hline 001 \\ 0 \end{array}$ | When starting on initialization after fault trip |  |  |  |  |  |
|  |  |  |  | $\begin{array}{\|l} 010 \\ 0 \\ \hline 100 \\ \hline \end{array}$ | When restarting after instantaneo us power interruption When starting with power |  |  |  |  |  |

${ }^{35}$ Displayed when dr. 09 (Control Mode) is set to 6 (PM Sensorless).
${ }^{36}$ Will not be displayed if dr. 09 is set to 4 (IM Sensorless).
${ }^{37}$ The initial value 0000 will be displayed on the keypad as 181.

## ENERTRONICA <br> SANTERNO

| Code Cn | Comm Addr | Name | LCD Display | Setting Range | Initial Value |  | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | on |  |  |  |  |  |
| $72^{38}$ | Oh1448 | Speed search reference current | SS SupCurrent | 80-200(\%) | 150 | O/A | 0 | I/P | p. 234 |
| $73^{39}$ | Oh1449 | Speed search proportional gain | $\begin{aligned} & \text { SS P- } \\ & \text { Gain } \end{aligned}$ | 0-9999 |  | O/A | 0 | I | p. 234 |
| $74^{39}$ | Oh144A | Speed search integral gain | $\begin{aligned} & \text { SSI- } \\ & \text { Gain } \end{aligned}$ | 0-9999 | Flying Start-1 :200 Flying Start-2 :1000 | O/A | 0 | I | p. 234 |
| $75^{39}$ | Oh144B | Output blocking time before speed search | SS Block Time | 0.0-60.0(s) | 1.0 | X/A | 0 | I/P | p. 234 |
| $76^{39}$ | Oh144C | Speed search Estimator gain | $\begin{aligned} & \text { Spd Est } \\ & \text { Gain } \end{aligned}$ | 50-150(\%) | 100 | O/A | 0 | 1 | - |
| 77 | Oh144D | Energy buffering selection | KEB <br> Select | 0 No | 0:No | X/A | 0 | I/P | p. 228 |
|  |  |  |  | 1 Yes |  |  |  |  |  |
| $78^{41}$ | Oh144E | Energy buffering start level | $\begin{array}{\|l\|} \hline \text { KEB } \\ \text { Start } \\ \text { Lev } \\ \hline \end{array}$ | 110.0-140.0(\%) | 125.0 | X/A | 0 | I/P | p. 228 |
| $79^{41}$ | Oh144F | Energy buffering stop level | $\begin{aligned} & \text { KEB } \\ & \text { Stop } \\ & \text { Lev } \\ & \hline \end{aligned}$ | 125.0-145.0(\%) | 130.0 | X/A | 0 | I/P | p. 228 |
| $80^{41}$ | Oh1450 | Energy buffering gain | $\begin{aligned} & \text { KEB } \\ & \text { Gain } \end{aligned}$ | 1-20000 | 1000 | O/A | 0 | I/P | p. 228 |
| $85^{42}$ | Oh1455 | Flux estimator proportional | $\begin{aligned} & \text { Flux P } \\ & \text { Gain1 } \end{aligned}$ | 100-700 | 370 | O/A | X | I | p. 212 |

${ }^{38}$ Displayed when any of the Cn. 71 code bits are set to 1 and Cn 70 is set to 0 (Flying Start-1).
${ }^{39}$ Displayed when any of the $C n .71$ code bits are set to 1.
${ }^{40}$ The initial value is 1200 when the motor-rated capacity is less than 7.5 kW
${ }^{41}$ Displayed when Cn .77 is set to 1 (Yes).
${ }^{42}$ Displayed when Cn .20 is set to 1 (Yes).

Table of Functions

| Code Cn | Comm Addr | Name | LCD Display | Setting Range | Initial Value | Property | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | gain1 |  |  |  |  |  |  |  |
| $81^{41}$ | Oh1451 | Energy buffering I gain | KEBI Gain | 1~20000 | 500 | O/A | 0 | I/P | p. 217 |
| $82^{41}$ | Oh1452 | Energy buffering Slip gain | KEB Slip Gain | 0~2000.0\% | 30.0 | O/A | 0 | I | p. 217 |
| $83^{41}$ | Oh1453 | Energy buffering acceleration time | KEBAcc Time | 0.0~600.0(s) | 10.0 | O/A | 0 | I/P | p. 217 |
| $85^{43}$ | Oh1455 | Flux estimator proportional gain1 | Flux P Gain1 | 100-700 | 370 | O/A | X | 1 | p. 212 |
| $86^{42}$ | Oh1456 | Flux estimator proportional gain2 | Flux P Gain2 | 0-100 | 0 | O/A | X | I | p. 212 |
| $87^{42}$ | Oh1457 | Flux estimator proportional gain3 | Flux P Gain3 | 0-500 | 100 | O/A | X | I | p. 212 |
| $88^{42}$ | Oh1458 | Flux estimator integral gain1 | Flux I Gain1 | 0-200 | 50 | O/A | X | I | p. 212 |
| $89^{42}$ | Oh1459 | Flux estimator integral gain2 | Flux I Gain2 | 0-200 | 50 | O/A | X | I | p. 212 |
| $90^{42}$ | Oh145A | Flux estimator integral gain3 | Flux Gain3 | 0-200 | 50 | O/A | X | I | p. 212 |
| $91^{42}$ | Oh145B | Sensorless voltage compensation1 | SLVolt Comp1 | 0-60 |  | O/A | X | I | p. 212 |
| $92^{42}$ | Oh145C | Sensorless voltage compensation2 | SL Volt Comp2 | 0-60 | Dependent on motor | O/A | X | I | p. 212 |
| $93^{42}$ | Oh145D | Sensorless voltage compensation 3 | SL Volt Comp3 | 0-60 | settin | O/A | X | 1 | p. 212 |
| $94^{42}$ | Oh145E | Sensorless field weakening start frequency | $\begin{aligned} & \text { SLFW } \\ & \text { Freq } \end{aligned}$ | 80.0-110.0(\%) | 100.0 | X/A | X | 1 | p. 208 |
| $95^{42}$ | Oh145F | Sensorless | SLFC | 0.00-8.00(Hz) | 2.00 | X/A | X | I | p. 208 |

${ }^{43}$ Displayed when Cn. 20 is set to 1 (Yes).

| Code <br> Cn | Comm <br> Addr | Name | LCD <br> Display | Setting Range | Initial Value | Property <br> $*$ | V/F | SL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Ref. | gain Switching |
| :---: |

### 8.6 Input Terminal Block Function group (PAR $\rightarrow$ In)

In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control (dr.09) , I - IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| Code In | Comm. Address | Naml/P | LCD Display | Setting Range | Initial Value | Property <br> * | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | Jump Code | Jump | 1-99 | 65 | O/A | 0 | I/P | p. 72 |
| 01 | Oh1501 | Frequency for maximum analog input | Freq at 100\% | Start frequencyMaximum frequency(Hz) | Maximum frequency | O/A | 0 | I/P | p. 118 |
| 02 | Oh1502 | Torque at maximum analog input | Torque at100\% | 0.0-200.0(\%) | 100.0 | O/A | X | X | - |
| 05 | Oh1505 | V1 input voltage display | V1 Monitor(V) | -12.00-12.00(V) | 0.00 | -/A | 0 | I/P | p. 1118 |
| 06 | Oh1506 | V1 input polarity selection | V1 Polarity | 0 Unipolar <br> 1 Bipolar | $0:$ Unipolar | X/A | 0 | I/P | p. 118 |
| 07 | Oh1507 | Time constant of V1 input filter | V1 Filter | 0-10000(ms) | 100 | O/A | 0 | I/P | p. 118 |
| 08 | Oh1508 | V1 Minimum input voltage | V1 Volt x1 | 0.00-10.00(V) | 0.00 | O/A | 0 | I/P | p. 1118 |
| 09 | Oh1509 | V1 output at Minimum voltage (\%) | V1 Perc y1 | 0.00-100.00(\%) | 0.00 | O/A | 0 | I/P | p. 118 |
| 10 | Oh150A | V1 Maximum input voltage | V1 Volt x2 | 0.00-12.00(V) | 10.00 | O/A | 0 | I/P | p. 1118 |
| 11 | Oh150B | V1 output at Maximum voltage (\%) | V1 Perc y2 | 0.00-100.00(\%) | 100.00 | O/A | 0 | I/P | p. 1118 |

## Table of Functions


${ }^{44}$ Displayed when In. 06 is set to 1 (Bipolar).
${ }^{45}$ Quantizing is not used when set to 0 .
${ }^{46}$ Displayed when V is selected on the analog current/voltage input circuit selection switch (SW2).

${ }^{47}$ Displayed when I is selected on the analog current/voltage input circuit selection switch (SW2).

Table of Functions

${ }^{48}$ Displayed when P5 is selected on Px terminal function. (IP66 models only.)
${ }^{49}$ The initial value 111111 will be displayed on the keypad as

${ }^{5}$ The initial value 0000000 will be displayed on the keypad as 1515

| Code In | Comm. Address | Naml/P | LCD Display | Setting Range |  | Initial Value | Property | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | direction change | Inverting | 1 | Yes |  |  |  |  |  |
| 98 | Oh1562 | TI quantization level | TI Quantizing | $\begin{aligned} & 0.00^{45}, 0.04- \\ & 10.00(\%) \end{aligned}$ |  | 0.04 | O/A | 0 | I/P | p. 127 |
| 99 | Oh1563 | SW1(NPN/PNP) SW2(V1/V2[12]) status | IO SW State | Bi | 00~11 | 01 | -/A | 0 | I/P | - |
|  |  |  |  | 00 | NPN, V2 |  |  |  |  |  |
|  |  |  |  | 01 | NPN, I2 |  |  |  |  |  |
|  |  |  |  | 10 | PNP, V2 |  |  |  |  |  |
|  |  |  |  | 11 | PNP, I2 |  |  |  |  |  |

### 8.7 Output Terminal Block Function group (PAR $\rightarrow$ OU)

SL: Sensorless vector control (dr.09) , I - IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| Code OU | Comm. <br> Addr | Name | LCD Display |  | Setting Range | Initial <br> Value | $\begin{array}{\|c\|} \hline \text { Prope } \\ \text { rty* } \\ \hline \end{array}$ | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | $\begin{aligned} & \text { Jump } \\ & \text { Code } \end{aligned}$ | JumpCode | 1-99 |  | 30 | O/A | 0 | I/P | p. 72 |
| 01 | Oh1601 | Analog output 1 item | A01 Mode | 0 | Frequency | 0:Freq uency | O/A | 0 | I/P | p. 258 |
|  |  |  |  | 1 | Output Current |  |  |  |  |  |
|  |  |  |  | 2 | Output Voltage |  |  |  |  |  |
|  |  |  |  | 3 | DCLink Voltage |  |  |  |  |  |
|  |  |  |  | 4 | Torque |  |  |  |  |  |
|  |  |  |  | 5 | Output Power |  |  |  |  |  |
|  |  |  |  | 6 | Idse |  |  |  |  |  |
|  |  |  |  | 7 | Iqse |  |  |  |  |  |
|  |  |  |  | 8 | Target Freq |  |  |  |  |  |
|  |  |  |  | 9 | Ramp Freq |  |  |  |  |  |
|  |  |  |  | 10 | Speed Fdb |  |  |  |  |  |
|  |  |  |  |  | PID Ref Value |  |  |  |  |  |
|  |  |  |  |  | PID Fdb Value |  |  |  |  |  |
|  |  |  |  |  | PID Output |  |  |  |  |  |
|  |  |  |  |  | Constant |  |  |  |  |  |
| 02 | Oh1602 | Analog output 1 gain | A01 Gain | -100 | 00.0-1000.0(\%) | 100.0 | O/A | 0 | I/P | p. 258 |
| 03 | Oh1603 | Analog | A01 Bias | -100 | 0.0-100.0(\%) | 0.0 | O/A | 0 | I/P | p. 258 |


| Code OU | Comm. Addr | Name | LCD Display |  | Setting Range | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | output 1 bias |  |  |  |  |  |  |  |  |
| 04 | Oh1604 | Analog output 1 filter | A01 Filter | 0-10 | 0000(ms) | 5 | O/A | 0 | I/P | p. 258 |
| 05 | Oh1606 | Analog constant output 1 | A01 Const \% | 0.0- | 100.0(\%) | 0.0 | O/A | 0 | I/P | p. 258 |
| 06 | Oh1606 | Analog output 1 monitor | A01 Monitor | 0.0-1000.0(\%) |  | 0.0 | -/A | 0 | I/P | p. 258 |
| 07 | Oh1607 | Analog output 2 item | AO2 Mode [0034 model only] | 0 | Frequency |  |  |  |  |  |
|  |  |  |  |  | Output Current |  |  |  |  |  |
|  |  |  |  |  | Output Voltage |  |  |  |  |  |
|  |  |  |  |  | DCLink Voltage |  |  |  |  |  |
|  |  |  |  |  | Torque |  |  |  |  |  |
|  |  |  |  |  | Output Power |  |  |  |  |  |
|  |  |  |  | 6 | Idse |  |  |  |  |  |
|  |  |  |  | 7 | Iqse |  |  |  |  |  |
|  |  |  |  |  | Target Freq |  |  |  |  |  |
|  |  |  |  |  | Ramp Freq |  |  |  |  |  |
|  |  |  |  |  | Speed Fdb |  |  |  |  |  |
|  |  |  |  |  | PID Ref Value |  |  |  |  |  |
|  |  |  |  |  | PID Fdb Value |  |  |  |  |  |
|  |  |  |  |  | PID Output |  |  |  |  |  |
|  |  |  |  |  | Constant |  |  |  |  |  |
| 08 | Oh1608 | Analog output 2 gain | $\begin{array}{\|l\|} \hline \text { AO2 Gain } \\ \text { [0034 model } \\ \text { only] } \\ \hline \text { n } \end{array}$ | -100 | 00.0~1000.0(\%) | 100.0 | 0 | 0 | I/P | p. 258 |
| 09 | Oh1609 | Analog output 2 bias | $\begin{aligned} & \begin{array}{l} \text { AO2 Bias } \\ \text { [0034 model } \\ \text { only] } \end{array} \end{aligned}$ | -100 | 0.0~100.0(\%) | 0.0 | 0 | 0 | I/P | p. 258 |
| 10 | Oh160A | Analog output 2 filter | $\begin{aligned} & \text { AO2 Filter } \\ & \text { [0034 model } \\ & \text { only] } \end{aligned}$ | 0~1 | 0000(ms) | 5 | 0 | 0 | I/P | p. 258 |
| 11 | Oh160B | Analog constant output 2 | $\begin{aligned} & \text { AO2 Const \% } \\ & \text { [0034 model } \\ & \text { only] } \\ & \hline \end{aligned}$ | 0.0 | 100.0(\%) | 0.0 | 0 | 0 | I/P | p. 258 |
| 12 | Oh160C | Analog output 2 monitor | AO2 Monitor [0034 model | 0.0 | 1000.0(\%) | 0.0 |  | 0 | I/P | p. 258 |

## Table of Functions

| Code <br> OU | Comm. <br> Addr | Name | LCD Display |  | Setting Range | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | only] |  |  |  |  |  |  |  |
| 30 | Oh161E | Fault output item | Trip Out Mode | bit | 000-111 | $010^{51}$ | O/A | 0 | I/P | p. 267 |
|  |  |  |  | 1 | Low voltage |  |  |  |  |  |
|  |  |  |  | 2 | Any faults other than low voltage |  |  |  |  |  |
|  |  |  |  | 3 | Automatic restart final failure |  |  |  |  |  |
| 31 | Oh161F | Multifunction relay 1 item | Relay 1 | 0 | None | 29:Trip | O/A | 0 | I/P | p. 263 |
|  |  |  |  | 1 | FDT-1 |  |  |  |  |  |
|  |  |  |  | 2 | FDT-2 |  |  |  |  |  |
|  |  |  |  | 3 | FDT-3 |  |  |  |  |  |
|  |  |  |  | 4 | FDT-4 |  |  |  |  |  |
|  |  |  |  | 5 | Over Load |  |  |  |  |  |
|  |  |  |  | 6 | IOL |  |  |  |  |  |
|  |  |  |  | 7 | Under Load |  |  |  |  |  |
|  |  |  |  | 8 | Fan Warning |  |  |  |  |  |
|  |  |  |  | 9 | Stall |  |  |  |  |  |
|  |  |  |  | 10 | Over Voltage |  |  |  |  |  |
|  |  |  |  | 11 | Low Voltage |  |  |  |  |  |
|  |  |  |  | 12 | Over Heat |  |  |  |  |  |
|  |  |  |  | 13 | Lost Command |  |  |  |  |  |
|  |  |  |  | 14 | Run |  |  |  |  |  |
|  |  |  |  | 15 | Stop |  |  |  |  |  |
|  |  |  |  | 16 | Steady |  |  |  |  |  |
|  |  |  |  | 17 | Inverter Line |  |  |  |  |  |
|  |  |  |  | 18 | Comm Line |  |  |  |  |  |
|  |  |  |  | 19 | Speed Search |  |  |  |  |  |
|  |  |  |  | 22 | Ready |  |  |  |  |  |
|  |  |  |  | 28 | Timer Out |  |  |  |  |  |
|  |  |  |  | 29 | Trip |  |  |  |  |  |
|  |  |  |  | 31 | DB Warn\%ED |  |  |  |  |  |
|  |  |  |  | 34 | On/Off Control |  |  |  |  |  |
|  |  |  |  | 35 | BR Control |  |  |  |  |  |
|  |  |  |  | 36 | CAP.Warning |  |  |  |  |  |
|  |  |  |  | 37 | FAN Exchange |  |  |  |  |  |
|  |  |  |  | 38 | Fire Mode |  |  |  |  |  |

${ }^{51}$ The initial value 010 will be displayed on the keypad as 000001000

| $\begin{gathered} \text { Code } \\ \text { OU } \end{gathered}$ | Comm. Addr | Name | LCD Display |  | Setting Range | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | Oh1621 | Multifunction output1 item | Q1 Define | 0 | None | 14:Run | O/A | 0 | I/P | p. 263 |
|  |  |  |  | 1 | FDT-1 |  |  |  |  |  |
|  |  |  |  | 2 | FDT-2 |  |  |  |  |  |
|  |  |  |  | 3 | FDT-3 |  |  |  |  |  |
|  |  |  |  | 4 | FDT-4 |  |  |  |  |  |
|  |  |  |  | 5 | Over Load |  |  |  |  |  |
|  |  |  |  | 6 | IOL |  |  |  |  |  |
|  |  |  |  | 7 | Under Load |  |  |  |  |  |
|  |  |  |  | 8 | Fan Warning |  |  |  |  |  |
|  |  |  |  | 9 | Stall |  |  |  |  |  |
|  |  |  |  | 10 | Over Voltage |  |  |  |  |  |
|  |  |  |  | 11 | Low Voltage |  |  |  |  |  |
|  |  |  |  | 12 | Over Heat |  |  |  |  |  |
|  |  |  |  | 13 | Lost Command |  |  |  |  |  |
|  |  |  |  | 14 | Run |  |  |  |  |  |
|  |  |  |  | 15 | Stop |  |  |  |  |  |
|  |  |  |  | 16 | Steady |  |  |  |  |  |
|  |  |  |  | 17 | Inverter Line |  |  |  |  |  |
|  |  |  |  | 18 | Comm Line |  |  |  |  |  |
|  |  |  |  | 19 | Speed Search |  |  |  |  |  |
|  |  |  |  | 22 | Ready |  |  |  |  |  |
|  |  |  |  | 28 | Timer Out |  |  |  |  |  |
|  |  |  |  | 29 | Trip |  |  |  |  |  |
|  |  |  |  | 31 | DB Warn\%ED |  |  |  |  |  |
|  |  |  |  | 34 | On/Off Control |  |  |  |  |  |
|  |  |  |  | 35 | BR Control |  |  |  |  |  |
|  |  |  |  | 36 | CAP.Warning |  |  |  |  |  |
|  |  |  |  | 37 | FAN Exchange |  |  |  |  |  |
|  |  |  |  | 38 | Fire Mode |  |  |  |  |  |
|  |  |  |  | 39 | $\mathrm{TO}^{52}$ |  |  |  |  |  |
| 41 | Oh1629 | Multifunction output monitor | DO Status | - |  | 00 | -/A | - | - | p. 263 |
| 50 | Oh1632 | Multifunction output On delay | DO On Delay |  | -100.00(s) | 0.00 | O/A | 0 | I/P | p. 268 |
| 51 | Oh1633 | Multifunction | DO Off Delay |  | -100.00(s) | 0.00 | O/A | 0 | I/P | p. 268 |

[^17]
## Table of Functions

| Code OU | Comm. Addr | Name | LCD Display |  | Setting Range | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | output Off delay |  |  |  |  |  |  |  |  |
| 52 | Oh1634 | Multifunction output contact selection | DO NC/NO Sel | Q1, | Relay1 | $00^{53}$ | X/A | 0 | I/P | p. 268 |
|  |  |  |  |  | A contact (NO) |  |  |  |  |  |
|  |  |  |  |  | B contact (NC) |  |  |  |  |  |
| 53 | Oh1635 | Fault output On delay | TripOut OnDly | 0.00-100.00(s) |  | 0.00 | O/A | 0 | I/P | p. 267 |
| 54 | Oh1636 | Fault output Off delay | TripOut OffDly | 0.00 | -100.00(s) | 0.00 | O/A | 0 | I/P | p. 267 |
| 55 | h1637 | Timer On delay | TimerOn Delay | 0.00 | -100.00(s) | 0.00 | O/A | 0 | I/P | p. 253 |
| 56 | Oh1638 | Timer Off delay | TimerOff Delay | 0.00 | -100.00(s) | 0.00 | O/A | 0 | I/P | p. 253 |
| 57 | Oh1639 | Detected frequency | FDT <br> Frequency |  | -Maximum uency(Hz) | 30.00 | O/A | 0 | I/P | p. 263 |
| 58 | Oh163A | Detected frequency band | FDT Band | 0.00-Maximum frequency(Hz) |  | 10.00 | O/A | 0 | I/P | p. 263 |
| 61 | Oh163D | Pulse output gain | TO Mode | 0 | Frequency | 0 : <br> Freque ncy | O/A | 0 | I/P | p. 261 |
|  |  |  |  | 1 | Output Current |  |  |  |  |  |
|  |  |  |  | 2 | Output Voltage |  |  |  |  |  |
|  |  |  |  |  | DCLink Voltage |  |  |  |  |  |
|  |  |  |  |  | Torque |  |  |  |  |  |
|  |  |  |  | 5 | Output Power |  |  |  |  |  |
|  |  |  |  | 6 | Idse |  |  |  |  |  |
|  |  |  |  | 7 | Iqse |  |  |  |  |  |
|  |  |  |  | 8 | Target Freq |  |  |  |  |  |
|  |  |  |  |  | Ramp Freq |  |  |  |  |  |
|  |  |  |  | 10 | Speed Fdb |  |  |  |  |  |
|  |  |  |  | 12 | PID Ref Value |  |  |  |  |  |
|  |  |  |  | 13 | PID Fdb Value |  |  |  |  |  |
|  |  |  |  |  | PID Output |  |  |  |  |  |
|  |  |  |  | 15 | Constant |  |  |  |  |  |
| 62 | Oh163E | Pulse output | TO Gain | -100 | 00.0-1000.0(\%) | 100.0 | O/A | 0 | I/P | p. 261 |

${ }^{53}$ The initial value 00 will be displayed on the keypad as 0001010

| Code OU | Comm. <br> Addr | Name | LCD Display | Setting Range | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | gain |  |  |  |  |  |  |  |
| 63 | Oh163F | Pulse output bias | TO Bias | -100.0-100.0(\%) | 0.0 | O/A | 0 | I/P | p. 261 |
| 64 | Oh1640 | Pulse output filter | TO Filter | 0-10000(ms) | 5 | O/A | 0 | I/P | p. 261 |
| 65 | Oh1641 | Pulse output constant output 2 | TO Const \% | 0.0-100.0(\%) | 0.0 | O/A | 0 | I/P | p. 261 |
| 66 | Oh1642 | Pulse output monitor | TO Monitor | 0.0-1000.0(\%) | 0.0 | -/A | 0 | I/P | p. 261 |

### 8.8 Communication Function group (PAR $\rightarrow$ CM)

In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control (dr.09) , I IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| Code CM | Comm. Addr | Name | LCD Display | Setting Range |  | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  | Jump Code | $\begin{aligned} & \text { Jump } \\ & \text { Code } \end{aligned}$ | 1-99 |  | 20 | O/A | 0 | I/P | p. 72 |
| 01 | Oh1701 | Built-in communication inverterID | Int485 St \|ID | 1-250 |  | 1 | O/A | 0 | I/P | p. 300 |
| $02^{54}$ | Oh1702 | Built-in communication protocol | $\begin{array}{\|l} \text { Int485 } \\ \text { Proto } \end{array}$ | 0 | ModBus RTU | 0 : <br> ModBus <br> RTU | 0/A | 0 | I/P | p. 300 |
| $03^{54}$ | Oh1703 | Built-in communication speed | Int485 BaudR | 5 | 1200 bps <br> 2400 bps <br> 4800 bps <br> 9600 bps <br> 19200 bps <br> 38400 bps | 3: <br> 9600 <br> bps | O/A | 0 | I/P | p. 300 |

## SANTERNO

## Table of Functions

| Code CM | Comm. Addr | Name | LCD Display | Setting Range |  | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 6 | 56 Kbps |  |  |  |  |  |
|  |  |  |  | 7 | $115 \mathrm{Kbps}^{54}$ |  |  |  |  |  |
| $04^{54}$ | Oh1704 | Built-in communication frame setting | $\begin{array}{\|l} \text { Int485 } \\ \text { Mode } \end{array}$ |  | D8/PN/S1 | $\begin{aligned} & 0: \\ & \text { D8/PN/S } \end{aligned}$$1$ | O/A | 0 | I/P | p. 300 |
|  |  |  |  |  | D8/PN/S2 |  |  |  |  |  |
|  |  |  |  | 2 | D8/PE/S1 |  |  |  |  |  |
|  |  |  |  | 3 | D8/PO/S1 |  |  |  |  |  |
| $05^{54}$ | Oh1705 | Transmission delay after reception | Resp Delay |  | 000(ms) | 5 ms | O/A | 0 | I/P | p. 300 |
| $06^{55}$ | Oh1706 | Communication option S/W version | FBus S/W Ver | - |  | 0.00 | O/A | 0 | I/P | - |
| $07^{55}$ | Oh1707 | Communication option inverter ID | FBus ID | 0-2 |  | 1 | O/A | 0 | I/P | - |
| $08^{55}$ | Oh1708 | FIELD BUS communication speed | FBUS BaudRate | - |  | 12 Mbps | -/A | 0 | I/P | - |
| $09^{55}$ | Oh1709 | Communication option LED status | FieldBus LED | - |  | - | O/A | 0 | I/P | - |
| 30 | Oh171E | Number of output parameters | ParaStatus Num | 0-8 |  | 3 | O/A | 0 | I/P |  |
| $31^{56}$ | Oh171F | Output Communication address1 | Para Stauts-1 |  | 0-FFFF Hex | 000A | O/A | 0 | I/P | p. 305 |
| $32^{56}$ | Oh1720 | Output Communication address2 | Para Stauts-2 |  | 0-FFFF Hex | 000E | O/A | 0 | I/P | p. 305 |
| $33^{56}$ | Oh1721 | Output Communication address3 | Para Stauts-3 |  | 0-FFFF Hex | 000F | O/A | 0 | I/P | p. 305 |
| $34^{56}$ | Oh1722 | Output Communication address4 | Para Stauts-4 |  | 0-FFFF Hex | 0000 | O/A | 0 | I/P | p. 305 |
| $35^{56}$ | Oh1723 | Output Communication address5 | Para Stauts-5 |  | 0-FFFF Hex | 0000 | O/A | 0 | I/P | p. 305 |

## ${ }^{54} 115,200 \mathrm{bps}$

${ }^{55}$ Displayed only when a communication option card is installed.
${ }^{56}$ Only the range of addresses set at COM-30 is displayed.

| Code <br> CM | Comm. <br> Addr | Name | LCD <br> Display | Setting Range | Initial <br> Value | Prope <br> rty* | V/F | SL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Ref.

${ }^{57}$ Only the range of addresses set at COM-50 is displayed.

Table of Functions

| Code CM | Comm. <br> Addr | Name | LCD Display | Setting Range |  | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | multi-function input 2 | 2 |  |  |  |  |  |  |  |
| 72 | Oh1748 | Communication multi-function input 3 | $\begin{aligned} & \text { Virtual DI } \\ & 3 \end{aligned}$ | 2 | Rx | 0:None | O/A | 0 | I/P | p. 318 |
| 73 | Oh1749 | Communication multi-function input 4 | Virtual DI $4$ | 3 | RST | 0:None | O/A | 0 | I/P | p. 318 |
| 74 | Oh174A | Communication multi-function input 5 | Virtual DI 5 | 4 | External <br> Trip | 0:None | O/A | 0 | I/P | p. 318 |
| 75 | Oh174B | Communication multi-function input 6 | ```Virtual DI 6``` | 5 | BX | 0:None | O/A | 0 | I/P | p. 318 |
| 76 | Oh174C | Communication multi-function input 7 | Virtual DI $7$ | 6 | JOG | 0:None | O/A | 0 | I/P | p. 318 |
|  |  |  |  | 7 | Speed-L |  |  |  |  |  |
|  |  |  |  | 8 | Speed-M |  |  |  |  |  |
|  |  |  |  | 9 | Speed-H |  |  |  |  |  |
|  |  |  |  | 11 | XCEL-L |  |  |  |  |  |
|  |  |  |  | 12 | XCEL-M |  |  |  |  |  |
|  |  |  |  | 13 | RUN Enable |  |  |  |  |  |
|  |  |  |  | 14 | 3-Wire |  |  |  |  |  |
|  |  |  |  | 15 | 2nd Source |  |  |  |  |  |
|  |  |  |  | 16 | Exchange |  |  |  |  |  |
|  |  |  |  | 17 | Up |  |  |  |  |  |
|  |  |  |  | 18 | Down |  |  |  |  |  |
|  |  |  |  | 20 | U/D Clear |  |  |  |  |  |
| 77 | Oh174D | multi-function input 8 | $8$ | 21 | Analog Hold | 0:None | O/A | 0 | I/P | p. 318 |
|  |  |  |  | 22 | I-Term Clear |  |  |  |  |  |
|  |  |  |  | 23 | PID Openloop |  |  |  |  |  |
|  |  |  |  | 24 | P Gain2 |  |  |  |  |  |
|  |  |  |  | 25 | XCEL Stop |  |  |  |  |  |
|  |  |  |  | 26 | 2nd Motor |  |  |  |  |  |
|  |  |  |  | 34 | Pre Excite |  |  |  |  |  |
|  |  |  |  | 38 | Timer In |  |  |  |  |  |
|  |  |  |  | 40 | dis Aux Ref |  |  |  |  |  |
|  |  |  |  | 46 | FWDJOG |  |  |  |  |  |
|  |  |  |  | 47 | REVJOG |  |  |  |  |  |


| Code CM | Comm. Addr | Name | LCD Display | Setting Range |  | Initial Value | Prope rty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 49 | XCEL-H |  |  |  |  |  |
| 86 | Oh1756 | Communication multi-function input monitoring | Virt DI Status | - |  | 0 | X/A | 0 | I/P | p. 303 |
|  |  | Selection of data |  | 0 | Int485 | 0 | O/A | 0 | I/P | - |
| 90 | Oh175A | frame communication monitor | Comm Mon Sel | 1 | KeyPad |  |  |  |  |  |
| 91 | Oh175B | Data frame Rev count | Rcv Frame Num | 0~65535 |  | 0 | O/A | 0 | I/P | - |
| 92 | Oh175C | Data frame Err count | Err Frame Num | 0~65535 |  | 0 | O/A | 0 | I/P | - |
| 93 | Oh175D | NAK frame count | NAK Frame Num | 0~65535 |  | 0 | O/A | 0 | I/P | - |
| $94^{58}$ | - | Communication data upload | Comm Update | 0 | No | 0:No | -/A | 0 | I/P | - |
|  |  |  |  | 1 | Yes |  |  |  |  |  |
| 95 | Oh175F | P2P communication selection | Int 485 Func | 0 | Disable All | $\begin{aligned} & \text { 0: } \\ & \text { Disable } \\ & \text { All } \end{aligned}$ | X/A | 0 | I/P | p. 166 |
|  |  |  |  | 1 | P2P Master |  |  |  |  |  |
|  |  |  |  | 2 | P2P Slave |  |  |  |  |  |
|  |  |  |  | 3 | KPD-Ready |  |  |  |  |  |
| $96^{59}$ | $\begin{aligned} & \text { Oh1760 } \\ & \text { [RO] } \end{aligned}$ | DO setting selection | P2P OUTSel | Bit | 000~111 | O:No | O/A | 0 | I/P | p. 166 |
|  |  |  |  | 001 | Analog output |  |  |  |  |  |
|  |  |  |  | 010 | Multifunction relay |  |  |  |  |  |
|  |  |  |  | 100 | Multifunction output |  |  |  |  |  |

[^18]
## ENERTRONICA <br> SANTERNO

## Table of Functions

### 8.9 Application Function group (PAR $\rightarrow$ AP)

In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control (dr.09) , I IM Sensorless, P - PM Sensorless
*0/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common


[^19]Table of Functions

| $\begin{aligned} & \hline \text { Code } \\ & \text { AP } \end{aligned}$ | Comm. Addr | Name | LCD Display | Setting Range | Initial Value | $\begin{aligned} & \text { Prop } \\ & \text { erty* } \end{aligned}$ | $\begin{aligned} & \mathrm{V} / \\ & \mathrm{F} \end{aligned}$ | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | gain |  |  |  |  |  |  |  |
| $23^{61}$ | Oh1817 | PID controller integral time | PID I-Time | 0.0-200.0(s) | 10.0 | O/A | 0 | I/P | p. 197 |
| $24^{61}$ | Oh1818 | PID controller differentiation time | PID D-Time | 0-1000(ms) | 0 | O/A | 0 | I/P | p. 197 |
| $25^{61}$ | Oh1819 | PID controller feed-forward compensation gain | PID F-Gain | $\begin{array}{\|l} 0.0- \\ 1000.0(\%) \end{array}$ | 0.0 | O/A | 0 | I/P | p. 197 |
| $26^{61}$ | Oh181A | Proportional gain scale | P Gain Scale | 0.0-100.0(\%) | 100.0 | X/A | 0 | I/P | p. 197 |
| $27^{61}$ | Oh181B | PID output filter | PID Out LPF | 0-10000(ms) | 0 | O/A | 0 | I/P | p. 197 |
| $28^{61}$ | Oh181C | PID Mode | PID Mode | 0 Process <br> PID <br> 1 Normal <br> PID | 0 | X/A | 0 | I/P | - |
| $29^{61}$ | Oh181D | PID upper limit frequency | PID Limit Hi | PID lower limit frequency300.00(Hz) | 50.00 | O/A | 0 | I/P | p. 197 |
| $30^{61}$ | Oh181E | PID lower limit frequency | PID Limit Lo | -300.00-PID upper limit frequency(Hz ) | -50.00 | O/A | 0 | I/P | p. 197 |
| $31^{61}$ | Oh181F | PID output inverse | PID Out Inv | $\begin{array}{\|l\|l\|} \hline 0 & \mathrm{No} \\ \hline 1 & \text { Yes } \\ \hline \end{array}$ | 0:No | X/A | 0 | I/P | p. 197 |
| $32^{61}$ | Oh1820 | PID output scale | PID Out Scale | $\begin{array}{\|l\|} \hline 0.1- \\ 1000.0(\%) \\ \hline \end{array}$ | 100.0 | X/A | 0 | I/P | p. 197 |
| $34^{61}$ | Oh1822 | PID controller motion frequency | Pre-PID Freq | 0.00- <br> Maximum frequency(Hz | 0.00 | X/A | 0 | I/P | p. 197 |
| $35^{61}$ | Oh1823 | PID controller motion level | Pre-PID Exit | 0.0-100.0(\%) | 0.0 | X/A | 0 | I/P | p. 197 |
| $36^{61}$ | Oh1824 | PID controller motion delay time | Pre-PID Delay | 0-9999(s) | 600 | O/A | 0 | I/P | p. 197 |
| $37^{61}$ | Oh1825 | PID sleep mode delay time | PID Sleep DT | 0.0-999.9(s) | 60.0 | O/A | 0 | I/P | p. 197 |
| $38^{61}$ | Oh1826 | PID sleep mode | $\begin{aligned} & \text { PID Sleep } \\ & \text { Freq } \end{aligned}$ | 0.00Maximum | 0.00 | O/A | 0 | I/P | p. 197 |

Table of Functions

| $\begin{aligned} & \hline \text { Code } \\ & \text { AP } \end{aligned}$ | Comm. <br> Addr | Name | LCD Display | Setting Range |  | Initial <br> Value | Prop erty* | $\begin{aligned} & \mathrm{V} / \\ & \mathrm{F} \\ & \hline \end{aligned}$ | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | frequency |  |  | pency(Hz |  |  |  |  |  |
| $39^{61}$ | Oh1827 | PID wake-up level | PIDWakeUp Lev |  | (\%) | 35 | O/A | 0 | I/P | p. 197 |
| $40^{61}$ | Oh1828 | PID wake-up mode setting | PID WakeUp Mod | 0 | Below Level | $0:$ Belo w Level | O/A | 0 | I/P | p. 197 |
|  |  |  |  | 1 | Above Level |  |  |  |  |  |
|  |  |  |  | 2 | Beyond Level |  |  |  |  |  |
| $42^{61}$ | Oh182A | PID controller unit selection | PID Unit Sel | 0 | \% | 0:\% | O/A | 0 | I/P | p. 197 |
|  |  |  |  | 1 | Bar |  |  |  |  |  |
|  |  |  |  | 2 | mBar |  |  |  |  |  |
|  |  |  |  | 3 | Pa |  |  |  |  |  |
|  |  |  |  | 4 | kPa |  |  |  |  |  |
|  |  |  |  | 5 | Hz |  |  |  |  |  |
|  |  |  |  | 6 | rpm |  |  |  |  |  |
|  |  |  |  | 7 | V |  |  |  |  |  |
|  |  |  |  | 8 | , |  |  |  |  |  |
|  |  |  |  | 9 | kW |  |  |  |  |  |
|  |  |  |  | 10 | HP |  |  |  |  |  |
|  |  |  |  | 11 | ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |
|  |  |  |  | 12 | ${ }^{\circ} \mathrm{F}$ |  |  |  |  |  |
| $43^{61}$ | Oh182B | PID unit gain | PID Unit Gain | $\begin{aligned} & \text { 0.00- } \\ & 300.00(\%) \end{aligned}$ |  | 100.00 | O/A | 0 | I/P | p. 197 |
| $44^{61}$ | Oh182C | PID unit scale | PID Unit Scale | 0 | x100 | 2:x 1 | O/A | 0 | I/P | p. 197 |
|  |  |  |  | 1 | x10 |  |  |  |  |  |
|  |  |  |  | 2 | x 1 |  |  |  |  |  |
|  |  |  |  | 3 | $\times 0.1$ |  |  |  |  |  |
|  |  |  |  | 4 | $\times 0.01$ |  |  |  |  |  |
| $45^{61}$ | Oh182D | PID 2nd proportional gain | PID P2-Gain |  | 0.0(\%) | 100.0 | X/A | 0 | I/P | p. 197 |

${ }^{61}$ Displayed when AP. 01 is set to 2 (Proc PID).

### 8.10 Protection Function group (PAR $\rightarrow$ Pr)

In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control (dr.09) , I IM Sensorless, P - PM Sensorless
*0/X:Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| Code Pr | Comm. Address | Name | LCD Display | Setting Range |  | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | Jump Code | $\begin{aligned} & \text { Jump } \\ & \text { Code } \end{aligned}$ | 1-99 |  | 40 | O/A | 0 | I/P | p. 72 |
| 04 | Oh1B04 | Load level setting | Load <br> Duty | 0 | Normal Duty | 1:Heavy Duty | X/A | 0 | I/P | p. 276 |
|  |  |  |  | 1 | Heavy Duty |  |  |  |  |  |
| 05 | Oh1B05 | Input/output open-phase protection | Phase <br> Loss Chk | bit | 00-11 | $10^{62}$ | X/A | 0 | I/P | p. 281 |
|  |  |  |  | 01 | Output open phase |  |  |  |  |  |
|  |  |  |  | 10 | Input open phase |  |  |  |  |  |
| 06 | Oh1B06 | Input voltage range during open-phase | $\begin{aligned} & \text { IPO V } \\ & \text { Band } \end{aligned}$ | 1-100(V) |  | 15 | X/A | 0 | I/P | p. 281 |
| 07 | Oh1B07 | Deceleration time at fault trip | Trip Dec <br> Time | 0.0-600.0(s) |  | 3.0 | O/A | 0 | I/P | - |
|  | Oh1B08 | Selection of startup on trip reset | RST Restart | 0 | No | O:No | O/A | 0 | I/P | p. 238 |
|  |  |  |  | 1 | Yes |  |  |  |  |  |
| 09 | Oh1B09 | Number of automatic restarts | Retry Number | 0-10 |  | 0 | O/A | 0 | I/P | p. 238 |

${ }^{62}$ The initial value 10 will be displayed on the keypad as 8

SANTERNO

## Table of Functions

| Code Pr | Comm. Address | Name | LCD Display | Setting Range |  | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{63}$ | Oh1B0A | Automatic restart delay time | Retry Delay | 0.0-60.0(s) |  | 1.0 | O/A | 0 | I/P | p. 238 |
| 12 | Oh1B0C | Motion at speed command loss | Lost Cmd Mode | 0 | None | 0:None | O/A | 0 | I/P | p. 284 |
|  |  |  |  | 1 | Free-Run |  |  |  |  |  |
|  |  |  |  | 2 | Dec |  |  |  |  |  |
|  |  |  |  | 3 | Hold Input |  |  |  |  |  |
|  |  |  |  | 4 | Hold Output |  |  |  |  |  |
|  |  |  |  | 5 | Lost Preset |  |  |  |  |  |
| $13^{64}$ | Oh1B0D | Time to decide speed command loss | Lost Cmd Time | 0.1-120(s) |  | 1.0 | O/A | 0 | I/P | p. 284 |
| $14^{64}$ | Oh1B0E | Operation frequency at speed command loss | Lost Preset F | Start frequencyMaximum frequency(Hz) |  | 0.00 | O/A | 0 | I/P | p. 284 |
| $15^{64}$ | Oh1B0F | Analog input loss decision level | AI Lost Level | 0 1 | Half x 1 <br> Below x1 | 0 :Half of x1 | O/A | 0 | I/P | p. 284 |
|  |  | Overload |  | 0 | No |  |  |  |  |  |
| 17 | Oh1B11 | warning selection | Select | 1 | Yes | O:No | O/A | 0 | I/P | p. 276 |
| 18 | Oh1B12 | Overload alarm level | OLWarn Level | 30-180(\%) |  | 150 | O/A | 0 | I/P | p. 276 |
| 19 | Oh1B13 | Overload warning time | OL Warn Time | 0.0-30.0(s) |  | 10.0 | O/A | 0 | I/P | p. 276 |
| 20 | Oh1B14 | Motion at overload fault | OLTrip Select | 0 | None | 1:FreeRun | O/A | 0 | I/P | p. 276 |
|  |  |  |  | 1 | Free-Run |  |  |  |  |  |
|  |  |  |  | 2 | Dec |  |  |  |  |  |
| 21 | Oh1B15 | Overload fault level | OLTrip Level | 30-200(\%) |  | 180 | O/A | 0 | I/P | p. 276 |
| 22 | Oh1B16 | Overload | OLTrip | 0.0-60.0(s) |  | 60.0 | O/A | 0 | I/P | p. 276 |

[^20]| $\begin{gathered} \hline \text { Code } \\ \mathrm{Pr} \\ \hline \end{gathered}$ | Comm. <br> Address | Name | LCD Display | Setting Range |  | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | fault time | Time |  |  |  |  |  |  |  |
| 25 | Oh1B19 | Underload warning selection | UL Warn Sel | 0 | No | O:No | O/A | 0 | I/P | p. 287 |
|  |  |  |  | 1 | Yes |  |  |  |  |  |
| 26 | Oh1B1A | Underload warning time | UL Warn Time | 0.0-600.0(s) |  | 10.0 | O/A | 0 | I/P | p. 287 |
| 27 | Oh1B1B | Underload fault selection | ULTrip Sel | 0 | None | 0:None | O/A | 0 | I/P | p. 287 |
|  |  |  |  | 1 | Free-Run |  |  |  |  |  |
|  |  |  |  |  | Dec |  |  |  |  |  |
| 28 | Oh1B1C | Underload fault time | ULTrip Time | 0.0-600.0(s) |  | 30.0 | O/A | 0 | I/P | p. 287 |
| 29 | Oh1B1D | Underload lower limit level | UL LF Level | 10-30(\%) |  | 30 | O/A | 0 | I/P | p. 287 |
| 30 | Oh1B1E | Underload upper limit level | UL BF Level | 30-100(\%) |  | 30 | O/A | 0 | I/P | p. 287 |
| 31 | Oh1B1F | No motor motion at detection | No Motor Trip | 0 | None | 0:None | O/A | 0 | I/P | p. 294 |
|  |  |  |  |  | Free-Run |  |  |  |  |  |
| 32 | Oh1B20 | No motor detection current level | No Motor Level | 1-100(\%) |  | 5 | O/A | 0 | I | p. 294 |
| 33 | Oh1B21 | No motor detection delay | No Motor Time | 0.1-10.0(s) |  | 3.0 | O/A | 0 | I | p. 294 |
| 40 | Oh1B28 | Electronic thermal fault selection | ETH Trip Sel | 0 | None | 0:None | O/A | 0 | I/P | p. 274 |
|  |  |  |  | 1 | Free-Run |  |  |  |  |  |
|  |  |  |  | 2 | Dec |  |  |  |  |  |
|  |  | Motor |  | 0 | Self-cool |  |  |  |  |  |
| 41 | Oh1B29 | cooling fan type | Cooling | 1 | Forced-cool | cool | O/A | 0 | I/P | p. 274 |
| 42 | Oh1B2A | Electronic thermal 1 minute rating | ETH 1min |  | 200(\%) | 150 | O/A | 0 | I/P | p. 274 |
| 43 | Oh1B2B | Electronic thermal continuous | ETH Cont |  | 50(\%) | 120 | O/A | 0 | I/P | p. 274 |

## Table of Functions

| Code Pr | Comm. Address | Name | LCD Display | Setting Range |  | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | rating |  |  |  |  |  |  |  |  |
| 45 | Oh1B2D | BX trip mode | BX Mode | 0 | Free-Run | 0 | X/A | 0 | I/P | - |
|  |  |  |  | 1 | Dec |  |  |  |  |  |
| 50 | Oh1B32 | Stall prevention motion and flux braking | Stall Prevent | bit | 0000-1111 | 0000 | X/A | 0 | X | p. 277 |
|  |  |  |  | 0001 | Accelerating |  |  |  |  |  |
|  |  |  |  | 0010 | At constant speed |  |  |  |  |  |
|  |  |  |  | 0100 | At deceleration |  |  |  |  |  |
|  |  |  |  | 1000 | FluxBraking |  |  |  |  |  |
| 51 | Oh1B33 | Stall frequency1 | Stall Freq <br> 1 | $\begin{aligned} & \text { Start frequency- } \\ & \text { Stall } \\ & \text { frequency2(Hz) } \\ & \hline \end{aligned}$ |  | 50.00 | O/A | 0 | X | p. 277 |
| 52 | Oh1B34 | Stall level1 | Stall Level 1 | 30-250(\%) |  | 180 | X/A | 0 | X | p. 277 |
| 53 | Oh1B35 | Stall frequency2 | Stall Freq $2$ | Stall frequency1Stall frequency3(Hz) |  | 50.00 | O/A | 0 | X | p. 277 |
| 54 | Oh1B36 | Stall level2 | Stall Level 2 | 30-250(\%) |  | 180 | X/A | 0 | X | p. 277 |
| 55 | Oh1B37 | Stall frequency3 | Stall Freq <br> 3 | Stall frequency2- <br> Stall <br> frequency4(Hz) |  | 50.00 | O/A | 0 | X | p. 277 |
| 56 | Oh1B38 | Stall level3 | Stall Level 3 | 30-250(\%) |  | 180 | X/A | 0 | X | p. 277 |
| 57 | Oh1B39 | Stall frequency4 | Stall Freq <br> 4 | Stall frequency3Maximum frequency(Hz) |  | 50.00 | O/A | 0 | X | p. 277 |
| 58 | Oh1B3A | Stall level4 | Stall Level 4 | 30-250(\%) |  | 180 | X/A | 0 | X | p. 277 |
| 59 | Oh1B3B | Flux braking gain | Flux Brake Kp | 0~150[\%] |  | 0 | O/A | 0 | 1 | - |
| 60 | Oh1B3C | CAP diagnosis level | CAP. <br> Diag Perc | $10 \sim 100[\%]$ |  | 0 | O/A | 0 | I/P | - |


| Code Pr | Comm. <br> Address | Name | LCD Display |  | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $61^{65}$ | Oh1B3D | CAP diagnosis mode | CAP. Diag | 0 | None | 0 | X/A | 0 | I/P | - |
|  |  |  |  |  | Ref Diag |  |  |  |  |  |
|  |  |  |  | 2 | Pre Diag |  |  |  |  |  |
|  |  |  |  | 3 | Init Diag |  |  |  |  |  |
| $62^{65}$ | Oh1B3E | CAP Exchange Level | CAP Exchange Level | 50.0 ~ 95.0[\%] |  | 0 | X/A | 0 | I/P | - |
| $63^{65}$ | Oh1B3F | CAP Diag Level | CAP Diag Level | 0.0~100.0[\%] |  | 0.0 | -/A | 0 | I/P | - |
| 66 | Oh1B42 | DB resistor warning level | DB Warn \%ED | 0-30(\%) |  | 0 | O/A | 0 | I/P | p. 286 |
| 73 | Oh1B22 | Speed deviation trip | Speed Dev Trip | 0 | No | O:No | O/A | 0 | I/P |  |
|  |  |  |  |  | Yes |  |  |  |  |  |
| $74^{66}$ | Oh1B23 | Speed deviation band | Speed Dev Band | $1 \sim$ |  | 5 | O/A | 0 | I/P |  |
| $75^{66}$ | Oh1B24 | Speed deviation time | Speed DevTime |  | 120 | 60 | O/A | 0 | I/P |  |
| 79 | Oh1B4F | Cooling fan fault selection | FAN Trip Mode | 0 | Trip | 1: Warning | O/A | 0 | I/P | p. 289 |
|  |  |  |  | 1 | Warning |  |  |  |  |  |
| 80 | Oh1B50 | Motion selection at option trip | Opt Trip Mode | 0 | None | 1:Free-Run | O/A | 0 | I/P | p. 293 |
|  |  |  |  | 1 | Free-Run |  |  |  |  |  |
|  |  |  |  | 2 | Dec |  |  |  |  |  |
| 81 | Oh1B51 | Low voltage fault decision delay time | LVT Delay | 0.0-60.0(s) |  | 0.0 | X/A | 0 | I/P | p. 289 |
| 82 | Oh1B52 | LV2 <br> Selection | LV2 <br> Enable | 0 | No | 0 | X/A | 0 | I/P | - |
|  |  |  |  |  | Yes |  |  |  |  |  |
| 86 | Oh1B56 | Accumulated percent of fan usage | Fan Time Perc |  | 100.0[\%] | 0.0 | -/A | 0 | I/P | - |

${ }^{65}$ The Pr.61-63 codes are displayed when the Pr.60(CAP.DiagPrec) is set to more than 0.
${ }^{66}$ Displayed when Pr. 73 is set to 1 (YES)

## Table of Functions

| Code Pr | Comm. Address | Name | $\overline{L C D}$ Display |  | etting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 87 | Oh1B57 | Fan exchange warning level | Fan <br> Exchange <br> level | 0.0 | 100.0[\%] | 90.0 | O/A | 0 | I/P | - |
| $88^{67}$ | Oh1B58 | Fan reset time | Fan Time Rst | $\begin{array}{\|l\|} \hline 0 \\ \hline 1 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { No } \\ \hline \text { Yes } \\ \hline \end{array}$ | 0 | X/A | 0 | I/P | - |
| 89 | Oh1B59 | CAP, FAN Status | CAP, FAN State | Bit <br> 00 <br> 01 <br> 10 | $00 \sim 10$ <br> CAP Warning <br> FAN Warning | 0 | -/A | 0 | I/P | - |
| $90^{67}$ | Oh1B5A | Warning information | - | - |  | - | -/7 | 0 | I/P | - |
| $91^{67}$ | Oh1B5B | $\begin{aligned} & \text { Fault history } \\ & 1 \end{aligned}$ | - | - |  | - | -/7 | 0 | I/P | - |
| $92^{67}$ | Oh1B5C | Fault history 2 | - | - |  | - | -/7 | 0 | I/P | - |
| $93^{67}$ | Oh1B5D | Fault history 3 | - | - |  | - | -/7 | 0 | 0 | - |
| $94^{67}$ | Oh1B5E | Fault history 4 | - | - |  | - | -/7 | 0 | 0 | - |
| $95^{67}$ | Oh1B5F | Fault history 5 | - | - |  | - | -/7 | 0 | 0 | - |
| $96{ }^{67}$ | Oh1B60 | Fault history deletion | - | $\begin{array}{\|l\|} \hline 0 \\ \hline 1 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { No } \\ \hline \text { Yes } \\ \hline \end{array}$ | 0:No | -/7 | 0 | 0 | - |

### 8.11 2nd Motor Function group (PAR $\rightarrow$ M2)

The 2nd Motor function group will be displayed if any of $\ln .65-71$ in IP20 models, $\operatorname{In} .65-69$ in IP66 models are set to 26 (2nd MOTOR). In the following table, the data shaded in grey will be displayed when a related code has been selected.

SL: Sensorless vector control (dr.09) , I - IM Sensorless, P - PM Sensorless
*O/X: Write-enabled during operation, 7/L/A: Keypad/LCD keypad/Common

| Code <br> M2 | Comm. <br> Addr | Name | LCD <br> Display | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00 | - | Jump Code | Jump Code | $1-99$ | 14 | O/A | O | I | p. 72 |
| 04 | Oh1C04 | Acceleration | M2-Acc | $0.0-600.0(\mathrm{~s})$ | 20.0 | O/A | 0 | I | p. 241 |

${ }^{67}$ Will not be displayed when an LCD keypad is in use.

## ENERTRONICA <br> SANTERNO

Table of Functions

| $\begin{gathered} \hline \text { Code } \\ \text { M2 } \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { Comm. } \\ \text { Addr } \end{gathered}\right.$ | Name | $\begin{gathered} \hline \text { LCD } \\ \text { Display } \end{gathered}$ | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | time | Time |  |  |  |  |  |  |
| 05 | Oh1C05 | Deceleration time | M2-Dec <br> Time | 0.0-600.0(s) | 30.0 | 0/A | 0 | 1 | p. 241 |
| 06 | Oh1C06 | Motor capacity | M2Capacity | 00.2 kW |  | X/A | 0 | 1 | p. 241 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 2 0.75 kW |  |  |  |  |  |
|  |  |  |  | 3 1.1 kW |  |  |  |  |  |
|  |  |  |  | 4 1.5 kW <br> 5  |  |  |  |  |  |
|  |  |  |  | 5 2.2 kW |  |  |  |  |  |
|  |  |  |  | 63.0 kW |  |  |  |  |  |
|  |  |  |  | 7 3.7 kW <br> 8  |  |  |  |  |  |
|  |  |  |  | 84.0 kW |  |  |  |  |  |
|  |  |  |  | 9 5.5 .5 kW |  |  |  |  |  |
|  |  |  |  | 107.5 kW |  |  |  |  |  |
|  |  |  |  | 1111.0 kW |  |  |  |  |  |
|  |  |  |  | 1215.0 kW |  |  |  |  |  |
|  |  |  |  | 1318.5 kW |  |  |  |  |  |
|  |  |  |  | 1422.0 kW |  |  |  |  |  |
|  |  |  |  | 1530.0 kW |  |  |  |  |  |
| 07 | Oh1C07 | Base frequency | M2-Base Freq | $30.00-$$400.00(\mathrm{~Hz})$[V/F, SlipCompen]$40.00-$$120.00(\mathrm{~Hz})$[IMSensorless]$30.00-$$180.00(\mathrm{~Hz})$$[\mathrm{PM}$Sensorless $]$ | 50.00 | X/A | 0 | 1 | p. 241 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 08 | Oh1C08 | Control mode | M2-Ctrl Mode | 0 V/F | 0:V/F | X/A | 0 | 1 | p. 241 |
|  |  |  |  | Slip |  |  |  |  |  |
|  |  |  |  | Compen |  |  |  |  |  |
|  |  |  |  | 4 IM |  |  |  |  |  |
|  |  |  |  | ${ }^{4}$ Sensorless |  |  |  |  |  |
|  |  |  |  | PM Sensorless |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 10 | Oh1C0A | motor poles | Num | 2-48 | 4 | X/A | 0 | 1 | p. 241 |
| 11 | Oh1COB | Rated slip speed | M2-Rated Slip | 0-3000(rpm) | Dependent on motor | X/A | 0 | 1 | p. 241 |
|  |  |  |  |  |  |  |  |  |  |

## Table of Functions

| $\begin{gathered} \hline \text { Code } \\ \text { M2 } \\ \hline \end{gathered}$ | Comm. Addr | Name | LCD Display | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Oh1C0C | Motor rated current | M2-Rated Curr | 1.0-1000.0(A) | settings | X/A | 0 | 1 | p. 241 |
| 13 | Oh1C0D | Motor noload current | M2-Noload Curr | 0.5-1000.0(A) |  | X/A | 0 | 1 | p. 241 |
| 14 | Oh1C0E | Motor rated voltage | M2-Rated Volt | 0,170-480(V) |  | X/A | 0 | 1 | p. 241 |
| 15 | Oh1C0F | Motor efficiency | M2Efficiency | 64-100(\%) |  | X/A | 0 | 1 | p. 241 |
| 16 | Oh1C10 | Load inertia rate | $\begin{aligned} & \text { M2-Inertia } \\ & \text { Rt } \\ & \hline \end{aligned}$ | 0-8 |  | X/A | 0 | 1 | p. 241 |
| 17 | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Oh1C11 } \\ {[R / O]} \end{array} \\ \hline \end{array}$ | Stator resistance | M2-Rs | Dependent on motor settings |  | X/A | 0 | 1 | p. 241 |
| 18 | $\begin{aligned} & \hline \begin{array}{l} 0 h 1 C 12 \\ {[R / O]} \end{array} \\ & \hline \end{aligned}$ | Leakage inductance | M2-Lsigma |  |  | X/A | 0 | 1 | p. 241 |
| 19 | $\begin{aligned} & \begin{array}{l} \text { 0h1C13 } \\ {[R / O]} \end{array} \\ & \hline \end{aligned}$ | Stator inductance | M2-Ls |  |  | X/A | 0 | 1 | p. 241 |
| $20^{68}$ | $\begin{aligned} & \begin{array}{l} \text { Oh1C14 } \\ {[R / O]} \end{array} \\ & \hline \end{aligned}$ | Rotor time constant | M2-Tr | 25-5000(ms) |  | X/A | 0 | 1 | p. 241 |
| 25 | Oh1C19 | V/F pattern | M2-V/F Patt | 0 Linear | 0: Linear | X/A | 0 | 1 | p. 241 |
|  |  |  |  | 1 Square |  |  |  |  |  |
|  |  |  |  | 2 UserV/F |  |  |  |  |  |
| 26 | 0h1C1A | Forward Torque boost | M2-Fwd Boost | 0.0-15.0(\%) | 2.0 | X/A | 0 | 1 | p. 241 |
| 27 | 0h1C1B | Reverse Torque boost | M2-Rev Boost | 0.0-15.0(\%) |  | X/A | 0 | 1 | p. 241 |
| 28 | 0h1C1C | Stall prevention level | M2-Stall Lev | 30-150(\%) | 150 | X/A | 0 | 1 | p. 241 |
| 29 | 0h1C1D | Electronic thermal 1 minute rating | M2-ETH 1 min | 100-200(\%) | 150 | X/A | 0 | 1 | p. 241 |
| 30 | Oh1C1E | Electronic thermal continuous rating | M2-ETH Cont | 50-150(\%) | 100 | X/A | 0 | 1 | p. 241 |
| 40 | Oh1C28 | Rotation count speed gain | Load Spd Gain | 0~6000.0[\%] | 100.0 | O/A | 0 | 1 | - |

[^21]| $\begin{gathered} \hline \text { Code } \\ \text { M2 } \\ \hline \end{gathered}$ | Comm. <br> Addr | Name | LCD Display | Setting Range |  | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | Oh1C29 | Rotation count speed scale | Load Spd Scale | 0 | x 1 | $0: \times 1$ | O/A | 0 | 1 | - |
|  |  |  |  | 1 | $\times 0.1$ |  |  |  |  |  |
|  |  |  |  | 2 | $\times 0.01$ |  |  |  |  |  |
|  |  |  |  | 3 | $\times 0.001$ |  |  |  |  |  |
|  |  |  |  | 4 | $\times 0.0001$ |  |  |  |  |  |
|  |  |  |  | 0 | Rpm |  |  |  |  |  |
| 42 | 0h1C2A | count speed unit | Unit | 1 | mpm | 0: rpm | O/A | 0 | 1 | - |

### 8.12 User Sequence group (US)

This group appears when AP. 02 is set to 1 (Yes) or CM. 95 is set to 2 (P2P Master). The parameter cannot be changed while the user sequence is running.

SL: Sensorless vector control function (dr.09) , I - IM Sensorless, P - PM Sensorless

* $\mathbf{O} / \mathbf{X}$ : Write-enabled during operation, 7/L/A: keypad/LCD keypad/common

| Code US | Comm. <br> Add | Name | LCD Display | Setting Range | Initial <br> Value | Proper ty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | Jump code | Jump Code | 1-99 | 31 | O/A | 0 | I/P | p. 72 |
| 01 | Oh1D01 | User sequence operation command | User Seq Con | 0 Stop <br> 1 Run <br> 2 Digital In <br> Run | 0:Stop | X/A | 0 | I/P | p. 168 |
| 02 | Oh1D02 | User sequence operation loop time | US Loop Time | $\begin{array}{\|l\|l\|} \hline 0 & 0.01 \mathrm{~s} \\ \hline 1 & 0.02 \mathrm{~s} \\ \hline 2 & 0.05 \mathrm{~s} \\ \hline 3 & 0.1 \mathrm{~s} \\ \hline 4 & 0.5 \mathrm{~s} \\ \hline 5 & 1 \mathrm{~s} \\ \hline \end{array}$ | 1:0.02s | X/A | 0 | I/P | p. 168 |
| 11 | Oh1D0B | Output address link1 | Link UserOut1 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 12 | Oh1D0C | Output address link2 | Link UserOut2 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 13 | Oh1D0D | Output address link3 | Link UserOut3 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 14 | Oh1D0E | Output address link4 | Link UserOut4 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 15 | Oh1D0F | Output address link5 | Link UserOut5 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 16 | Oh1D10 | Output address link6 | Link UserOut6 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 17 | Oh1D11 | Output address | Link | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |

## Table of Functions

| $\begin{aligned} & \hline \text { Code } \\ & \text { US } \end{aligned}$ | Comm. Add | Name | LCD Display | Setting Range | Initial Value | Proper ty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | link7 | UserOut7 |  |  |  |  |  |  |
| 18 | 0h1D12 | Output address link8 | Link UserOut8 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 19 | 0h1D13 | Output address link9 | Link UserOut9 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 20 | 0h1D14 | Output address link10 | Link <br> UserOut10 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 21 | 0h1D15 | Output address link11 | Link UserOut11 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 22 | 0h1D16 | Output address link12 | Link <br> UserOut12 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 23 | 0h1D17 | Output address link13 | Link UserOut13 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 24 | 0h1D18 | Output address link14 | Link UserOut14 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 25 | 0h1D19 | Output address link15 | Link <br> UserOut15 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 26 | 0h1D1A | Output address link16 | Link UserOut16 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 27 | 0h1D1B | Output address link17 | Link UserOut17 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 28 | 0h1D1C | Output address link18 | Link UserOut18 | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 31 | 0h1D1F | Input constant setting1 | Void Paral | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 32 | 0h1D20 | Input constant setting2 | Void Para2 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 33 | 0h1D21 | Input constant setting3 | Void Para3 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 34 | 0h1D22 | Input constant setting4 | Void Para4 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 35 | 0h1D23 | Input constant setting5 | Void Para5 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 36 | 0h1D24 | Input constant setting6 | Void Para6 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 37 | 0h1D25 | Input constant setting7 | Void Para7 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 38 | 0h1D26 | Input constant setting8 | Void Para8 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 39 | 0h1D27 | Input constant setting9 | Void Para9 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 40 | 0h1D28 | Input constant setting10 | Void Para10 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |

Table of Functions

| Code US | Comm. <br> Add | Name | LCD Display | Setting Range | Initial Value | Proper ty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | Oh1D29 | Input constant setting11 | Void Parall | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 42 | Oh1D2A | Input constant setting12 | Void Para12 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 43 | Oh1D2B | Input constant setting13 | Void Paral3 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 44 | Oh1D2C | Input constant setting14 | Void Para14 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 45 | Oh1D2D | Input constant setting15 | Void Paral5 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 46 | Oh1D2E | Input constant setting16 | Void Para16 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 47 | Oh1D2F | Input constant setting17 | Void Para17 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 48 | Oh1D30 | Input constant setting18 | Void Para18 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 49 | Oh1D31 | Input constant setting19 | Void Para19 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 50 | Oh1D32 | Input constant setting20 | Void Para20 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 51 | Oh1D33 | Input constant setting21 | Void Para21 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 52 | Oh1D34 | Input constant setting22 | Void Para22 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 53 | Oh1D35 | Input constant setting23 | Void Para23 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 54 | Oh1D36 | Input constant setting24 | Void Para24 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 55 | Oh1D37 | Input constant setting25 | Void Para25 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 56 | Oh1D38 | Input constant setting26 | Void Para26 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 57 | Oh1D39 | Input constant setting27 | Void Para27 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 58 | Oh1D3A | Input constant setting28 | Void Para28 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 59 | Oh1D3B | Input constant setting29 | Void Para29 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 60 | Oh1D3C | Input constant setting30 | Void Para30 | -9999-9999 | 0 | X/A | 0 | I/P | p. 168 |
| 80 | Oh1D50S | Analog input 1 | P2P In V1 | 0-12,000 |  | -/A | 0 | I/P | p. 168 |
| 81 | Oh1D51 | Analog input2 | P2P In I2 | -12,000- |  | -/A | 0 | I/P | 68 |

## ENERTRONICA

SANTERNO
Table of Functions

| Code <br> US | Comm. <br> Add | Name | LCD Display | Setting <br> Range | Initial <br> Value | Proper <br> ty* | V/F | SL | Ref. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 12,000 |  |  |  |  |  |
| 82 | Oh1D52 | Digital input | P2P In DI | $0-0 \times 7 \mathrm{~F}$ |  | $-/ A$ | 0 | I/P | p. 168 |
| 85 | Oh1D55 | Analog output | P2P OutAO1 | $0-10,000$ | 0 | X/A | 0 | I/P | p.168 |
| 88 | Oh1D58 | Digital output | P2P OutDO | $0-0 \times 03$ | 0 | X/A | 0 | I/P | p. 168 |

### 8.13 User Sequence Function group(UF)

This group appears when AP. 02 is set to 1 (Yes) or CM. 95 is set to 2 (P2P Master). The parameter cannot be changed while the user sequence is running.
SL: Sensorless vector control function (dr.09)

* $\mathbf{O}$ / $\mathbf{X}$ : Write-enabled during operation, 7/L/A: keypad/LCD keypad/common

| $\begin{gathered} \hline \text { Code } \\ \text { UF } \\ \hline \end{gathered}$ | Comm. <br> Address | Name | $\begin{gathered} \text { LCD } \\ \text { Display } \\ \hline \end{gathered}$ |  | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | Jump code | $\begin{aligned} & \text { Jump } \\ & \text { Code } \end{aligned}$ | 1-99 |  | 41 | O/A | 0 | I/P | p. 72 |
| 01 | 0h1E01 | User function1 | User Funcl | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |


| $\begin{gathered} \hline \text { Code } \\ \text { UF } \end{gathered}$ | Comm. Address | Name | $\begin{gathered} \hline \text { LCD } \\ \text { Display } \\ \hline \end{gathered}$ |  | Setting Range | $\begin{array}{\|l\|} \hline \text { Initial } \\ \text { Value } \\ \hline \end{array}$ | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 21 | 1 BITTEST |  |  |  |  |  |
|  |  |  |  |  | 2 BITSET |  |  |  |  |  |
|  |  |  |  |  | 3 BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | 4 LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  |  | 5 PI_CONTORL |  |  |  |  |  |
|  |  |  |  |  | 6 PI_PROCESS |  |  |  |  |  |
|  |  |  |  |  | 7 UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | 8 DOWNCOUNT |  |  |  |  |  |
| 02 | Oh1E02 | User function input1-A | User Input1-A |  | -0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 03 | Oh1E03 | User function input1-B | User Input1-B |  | -OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 04 | Oh1E04 | User function input1-C | User Input1-C |  | -OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 05 | Oh1E05 | User function output1 | User Output1 |  | -32767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 06 | Oh1E06 | User function 2 | User Func2 | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | 0 COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | 1 COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | 2 COMPARE- |  |  |  |  |  |
|  |  |  |  |  | EQUAL |  |  |  |  |  |
|  |  |  |  | 13 | 3 COMPARE- |  |  |  |  |  |
|  |  |  |  | 14 | 14 TIMER |  |  |  |  |  |
|  |  |  |  | 15 | 5 LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | 6 AND |  |  |  |  |  |
|  |  |  |  | 17 | 7 OR |  |  |  |  |  |
|  |  |  |  | 18 | 8 XOR |  |  |  |  |  |

Table of Functions

| $\begin{gathered} \text { Code } \\ \text { UF } \end{gathered}$ | Comm. Address | Name | $\begin{aligned} & \text { LCD } \\ & \text { Display } \end{aligned}$ |  | Setting Range | $\begin{array}{\|c\|} \hline \text { Initial } \\ \text { Value } \\ \hline \end{array}$ | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 07 | Oh1E07 | User function input2-A | User Input2-A | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 08 | Oh1E08 | User function input2-B | $\begin{aligned} & \text { User } \\ & \text { Input2-B } \\ & \hline \end{aligned}$ | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 09 | Oh1E09 | User function input2-C | User Input2-C | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 10 | Oh1E0A | User function output2 | User Output2 | -32767-32767 |  | 0 | -/A | 0 | I/P | p. 168 |
| 11 | Oh1EOB | User function3 | User Func3 | 0 | NOP | O:NOP | X/A | 0 I/P | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARE- |  |  |  |  |  |
|  |  |  |  |  | NEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |


| $\begin{gathered} \hline \text { Code } \\ \text { UF } \\ \hline \end{gathered}$ | Comm. Address | Name | LCD Display |  | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITEST |  |  |  |  |  |
|  |  |  |  | 22 | 2 BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | 5 PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | 6 PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 12 | Oh1EOC | User function input3-A | User Input3-A |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 13 | Oh1E0D | User function input3-B | User Input3-B |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 14 | Oh1E0E | User function input3-C | User Input3-C |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 15 | Oh1E0F | User function output3 |  |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 16 | Oh1E10 | User function4 | User Func4 | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPARE- |  |  |  |  |  |
|  |  |  |  |  | EQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  |  | $\begin{aligned} & \text { NEQUAL } \\ & \hline 4 \text { TIMER } \end{aligned}$ |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |

Table of Functions

| $\begin{array}{c\|} \hline \text { Code } \\ \text { UF } \end{array}$ | Comm. <br> Address | Name | $\begin{aligned} & \text { LCD } \\ & \text { Display } \end{aligned}$ |  | Setting Range | $\begin{array}{\|l\|} \hline \text { Initial } \\ \text { Value } \\ \hline \end{array}$ | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 17 | Oh1E11 | User function input4-A | User Input4-A |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 18 | Oh1E12 | User function input4-B | User <br> Input4-B |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 19 | Oh1E13 | User function input4-C | User Input4-C |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 20 | Oh1E14 | User function output4 | User Output4 |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 21 | Oh1E15 | User function5 | User Func5 | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEOUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARE- |  |  |  |  |  |
|  |  |  |  |  | NEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |


| Code UF | Comm. <br> Address | Name | LCD Display |  | Setting Range | Initial <br> Value | Pro perty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 22 | Oh1E16 | User function input5-A | User Input5-A |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 23 | Oh1E17 | User function input5-B | User Input5-B |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 24 | Oh1E18 | User function input5-C | User Input5-C |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 25 | Oh1E19 | User function output5 | User Output5 |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 26 | 0h1E1A | User function6 | User Func6 | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |

Table of Functions

| Code UF | Comm. Address | Name | LCD Display |  | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $13 \left\lvert\, \begin{aligned} & 1 \\ & \mathrm{~N} \end{aligned}\right.$ | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  |  | TIMER |  |  |  |  |  |
|  |  |  |  |  | LIMIT |  |  |  |  |  |
|  |  |  |  |  | AND |  |  |  |  |  |
|  |  |  |  |  | OR |  |  |  |  |  |
|  |  |  |  | 18 X | XOR |  |  |  |  |  |
|  |  |  |  |  | ANDOR |  |  |  |  |  |
|  |  |  |  |  | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 B | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 B | BITSET |  |  |  |  |  |
|  |  |  |  | 23 B | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 L | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 P | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 P | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 U | UPCOUNT |  |  |  |  |  |
|  |  |  |  |  | DOWNCOUNT |  |  |  |  |  |
| 27 | Oh1E1B | User function input6-A | User Input6-A | 0-0xF | xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 28 | Oh1E1C | User function input6-B | User Input6-B | 0-0xF | xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 29 | 0h1E1D | User function input6-C | User Input6-C | 0-0xF | xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 30 | Oh1E1E | User function output6 | User Output6 | -3276 | 767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 31 |  | User function7 | User | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  | Func7 | 1 A | ADD |  |  |  |  |  |
|  |  |  |  | 2 S | SUB |  |  |  |  |  |
|  |  |  |  | 3 A | ADDSUB |  |  |  |  |  |
|  |  |  |  | $4{ }^{4}$ | MIN |  |  |  |  |  |
|  | 0h1E1F |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 A | ABS |  |  |  |  |  |
|  |  |  |  | 7 N | NEGATE |  |  |  |  |  |
|  |  |  |  | $8{ }^{8} 8$ | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 R | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |


| $\begin{gathered} \hline \text { Code } \\ \text { UF } \\ \hline \end{gathered}$ | Comm. Address | Name | LCD Display |  | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARE- |  |  |  |  |  |
|  |  |  |  | 14 | 4 TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 32 | Oh1E20 | User function input7-A | User Input7-A | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 33 | Oh1E21 | User function input7-B | User Input7-B | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 34 | Oh1E22 | User function input7-C | User Input7-C | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 35 | 0h1E23 | User function output7 | User Output7 | -32767-32767 |  | 0 | -/A | 0 | I/P | p. 168 |
| 36 | Oh1E24 | User function8 | User Func8 | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |

Table of Functions

| $\begin{gathered} \hline \text { Code } \\ \text { UF } \\ \hline \end{gathered}$ | Comm. <br> Address | Name | $\begin{gathered} \hline \text { LCD } \\ \text { Display } \\ \hline \end{gathered}$ |  | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEOUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 37 | Oh1E25 | User function input8-A | User Input8-A |  | DxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 38 | Oh1E26 | User function input8-B | User Input8-B |  | XxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 39 | Oh1E27 | User function input8-C | User Input8-C |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 40 | Oh1E28 | User function output8 | User Output8 |  | 767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 41 |  | User function9 | User | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  | Func9 | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  | Oh1E29 |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |


| Code UF | Comm. <br> Address | Name | LCD Display |  | Setting Range | Initial Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 42 | Oh1E2A | User function input9-A | User Input9-A | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 43 | Oh1E2B | User function input9-B | User Input9-B | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 44 | Oh1E2C | User function input9-C | User Input9-C | 0-0xFFFF |  | 0 | X/A | 0 | I/P | p. 168 |
| 45 | Oh1E2D | User function output9 | User Output9 | -32767-32767 |  | 0 | -/A | 0 | I/P | p. 168 |
| 46 | Oh1E2E | User function10 | User Func10 | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |

Table of Functions

| $\begin{gathered} \hline \text { Code } \\ \text { UF } \\ \hline \end{gathered}$ | Comm. <br> Address | Name | LCD Display |  | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 47 | Oh1E2F | User function input10-A | User Input10A |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 48 | Oh1E30 | User function input10-B | User Input10B |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 49 | Oh1E31 | User function input10-C | User Input10- <br> C |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 50 | Oh1E32 | User function output10 | User Output10 |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 51 | 0h1E33 | User | User | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |


| Code UF | Comm. Address | Name | LCD Display |  | Setting Range |  | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | function11 | Func11 | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 52 | Oh1E34 | User function input11-A | User Input11A |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 53 | Oh1E35 | User function input11-B | User Input11B |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 54 | 0h1E36 | User function | User |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |

Table of Functions


## ENERTRONICA <br> SANTERNO

Table of Functions

| Code UF | Comm. Address | Name | $\begin{gathered} \text { LCD } \\ \text { Display } \end{gathered}$ | Setting Range | $\begin{array}{\|c\|} \hline \text { Initial } \\ \hline \text { Value } \end{array}$ | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A |  |  |  |  |  |  |
| 58 | Oh1E3A | User function input12-B | User Input12B | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 59 | Oh1E3B | User function input12-C | User Input12C | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 60 | Oh1E3C | User function output12 | $\begin{array}{\|l\|} \hline \text { User } \\ \text { Output12 } \\ \hline \end{array}$ | -32767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 61 | Oh1E3D | User function13 | User Func13 | 0 NOP | O:NOP | X/A | 0 IP | I/P | p. 168 |
|  |  |  |  | 1 ADD |  |  |  |  |  |
|  |  |  |  | 2 SUB |  |  |  |  |  |
|  |  |  |  | 3 ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 MIN |  |  |  |  |  |
|  |  |  |  | 5 MAX |  |  |  |  |  |
|  |  |  |  | 6 ABS |  |  |  |  |  |
|  |  |  |  | 7 NEGATE |  |  |  |  |  |
|  |  |  |  | 8 MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | $\begin{array}{\|l\|l} \hline 12 & \begin{array}{l} \text { COMPARE- } \\ \text { EQUAL } \end{array} \end{array}$ |  |  |  |  |  |
|  |  |  |  | 13 COMPARE- |  |  |  |  |  |
|  |  |  |  | NEQUAL |  |  |  |  |  |
|  |  |  |  | 14 TIMER |  |  |  |  |  |
|  |  |  |  | 15 LIMIT |  |  |  |  |  |
|  |  |  |  | 16 AND |  |  |  |  |  |
|  |  |  |  | 17 OR |  |  |  |  |  |
|  |  |  |  | 18 XOR |  |  |  |  |  |
|  |  |  |  | 19 ANDOR |  |  |  |  |  |
|  |  |  |  | 20 SWITCH |  |  |  |  |  |
|  |  |  |  | 21 BITEEST |  |  |  |  |  |
|  |  |  |  | 22 BITSET |  |  |  |  |  |
|  |  |  |  | 23 BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 PI_CONTORL |  |  |  |  |  |

Table of Functions

| $\begin{gathered} \text { Code } \\ \text { UF } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Comm. } \\ \text { Address } \\ \hline \end{array}$ | Name | $\begin{gathered} \hline \text { LCD } \\ \text { Display } \\ \hline \end{gathered}$ | Setting Range | $\begin{array}{\|c\|} \hline \text { Initial } \\ \text { Value } \\ \hline \end{array}$ | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 26 PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 DOWNCOUNT |  |  |  |  |  |
| 62 | Oh1E3E | User function input13-A | User Input13- <br> A | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 63 | Oh1E3F | User function input13-B | $\begin{aligned} & \hline \text { User } \\ & \text { Input13- } \\ & \text { B } \end{aligned}$ | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 64 | Oh1E40 | User function input13-C | User Input13C | 0-0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 65 | Oh1E41 | User function output13 | $\begin{aligned} & \text { User } \\ & \text { Output13 } \end{aligned}$ | -32767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 66 | Oh1E42 | $\begin{array}{\|l\|} \hline \text { User } \\ \text { function14 } \end{array}$ | User Func14 | 0 NOP | 0:NOP | X/A | 0 |  | p. 168 |
|  |  |  |  | 1 ADD |  |  |  | I/P |  |
|  |  |  |  | 2 SUB |  |  |  |  |  |
|  |  |  |  | 3 ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 MIN <br> 5  |  |  |  |  |  |
|  |  |  |  | 5 MAX |  |  |  |  |  |
|  |  |  |  | 6 ABS |  |  |  |  |  |
|  |  |  |  | 7 NEGATE |  |  |  |  |  |
|  |  |  |  | 8 MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | $12 \begin{aligned} & \text { COMPARE- } \\ & \text { EQUAL } \end{aligned}$ |  |  |  |  |  |
|  |  |  |  | $\begin{array}{ll} 13 & \begin{array}{l} \text { COMPARE- } \\ \text { NEQUAL } \end{array} \\ \hline \end{array}$ |  |  |  |  |  |
|  |  |  |  | 14 TIMER |  |  |  |  |  |
|  |  |  |  | 15 LIMIT |  |  |  |  |  |
|  |  |  |  | 16 AND |  |  |  |  |  |
|  |  |  |  | 17 OR |  |  |  |  |  |
|  |  |  |  | 18 XOR |  |  |  |  |  |
|  |  |  |  | 19 ANDOR |  |  |  |  |  |
|  |  |  |  | 20 SWITCH |  |  |  |  |  |
|  |  |  |  | 21 BITTEST |  |  |  |  |  |



Table of Functions

| $\begin{gathered} \hline \text { Code } \\ \text { UF } \end{gathered}$ | Comm. Address | Name | $\begin{aligned} & \text { LCD } \\ & \text { Display } \end{aligned}$ |  | Setting Range | $\begin{aligned} & \text { Initial } \\ & \text { Value } \end{aligned}$ | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITEEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 72 | Oh1E48 | User function input15-A | User Input15A |  | -0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 73 | Oh1E49 | User function input15-B | $\begin{array}{\|l} \hline \text { User } \\ \text { Input15- } \\ \text { B } \end{array}$ |  | -0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 74 | Oh1E4A | User function input15-C | User Input15C |  | -0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 75 | Oh1E4B | User function output15 | $\begin{aligned} & \text { User } \\ & \text { Output15 } \end{aligned}$ |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 76 | Oh1E4C | User function | User | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  | Func16 | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEOUAL |  |  |  |  |  |


| Code UF | Comm. Address | Name | LCD Display |  | Setting Range | Initial <br> Value | Pro perty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 77 | Oh1E4D | User function input16-A | User <br> Input16- <br> A |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 78 | Oh1E4E | User function input16-B | $\begin{array}{\|l\|} \hline \text { User } \\ \text { Input16- } \\ \text { B } \\ \hline \end{array}$ |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 79 | Oh1E4F | User function input16-C | $\begin{aligned} & \text { User } \\ & \text { Input16- } \\ & \text { C } \\ & \hline \end{aligned}$ |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 80 | Oh1E50 | User function output16 | User Output16 |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 81 | 0h1E51 | User function 17 | User Func17 | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  |  | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  |  |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |

Table of Functions

| $\begin{gathered} \text { Code } \\ \text { UF } \\ \hline \end{gathered}$ | Comm. <br> Address | Name | $\begin{gathered} \text { LCD } \\ \text { Display } \\ \hline \end{gathered}$ |  | Setting Range | Initial <br> Value | Property* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 82 | Oh1E52 | User function input17-A | User Input17- <br> A |  | OxFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 83 | Oh1E53 | User function input17-B | $\begin{array}{\|l\|} \hline \text { User } \\ \text { Input17- } \\ \text { B } \\ \hline \end{array}$ |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 84 | Oh1E54 | User function input17-C | $\begin{array}{\|l\|} \hline \text { User } \\ \text { Input17- } \\ \text { C } \\ \hline \end{array}$ |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 85 | Oh1E55 | User function output17 | User Output17 |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |
| 86 |  | User function | User | 0 | NOP | 0:NOP | X/A | 0 | I/P | p. 168 |
|  |  |  | Func18 | 1 | ADD |  |  |  |  |  |
|  |  |  |  | 2 | SUB |  |  |  |  |  |
|  | Oh1E56 |  |  | 3 | ADDSUB |  |  |  |  |  |
|  |  |  |  | 4 | MIN |  |  |  |  |  |
|  |  |  |  | 5 | MAX |  |  |  |  |  |
|  |  |  |  | 6 | ABS |  |  |  |  |  |


| Code UF | Comm. <br> Address | Name | LCD Display |  | Setting Range | Initial <br> Value | Pro perty* | V/F | SL | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 7 | NEGATE |  |  |  |  |  |
|  |  |  |  | 8 | MPYDIV |  |  |  |  |  |
|  |  |  |  | 9 | REMAINDER |  |  |  |  |  |
|  |  |  |  | 10 | COMPARE-GT |  |  |  |  |  |
|  |  |  |  | 11 | COMPARE-GEQ |  |  |  |  |  |
|  |  |  |  | 12 | COMPAREEQUAL |  |  |  |  |  |
|  |  |  |  | 13 | COMPARENEQUAL |  |  |  |  |  |
|  |  |  |  | 14 | TIMER |  |  |  |  |  |
|  |  |  |  | 15 | LIMIT |  |  |  |  |  |
|  |  |  |  | 16 | AND |  |  |  |  |  |
|  |  |  |  | 17 | OR |  |  |  |  |  |
|  |  |  |  | 18 | XOR |  |  |  |  |  |
|  |  |  |  | 19 | ANDOR |  |  |  |  |  |
|  |  |  |  | 20 | SWITCH |  |  |  |  |  |
|  |  |  |  | 21 | BITTEST |  |  |  |  |  |
|  |  |  |  | 22 | BITSET |  |  |  |  |  |
|  |  |  |  | 23 | BITCLEAR |  |  |  |  |  |
|  |  |  |  | 24 | LOWPASSFILTER |  |  |  |  |  |
|  |  |  |  | 25 | PI_CONTORL |  |  |  |  |  |
|  |  |  |  | 26 | PI_PROCESS |  |  |  |  |  |
|  |  |  |  | 27 | UPCOUNT |  |  |  |  |  |
|  |  |  |  | 28 | DOWNCOUNT |  |  |  |  |  |
| 87 | Oh1E57 | User function input18-A | User Input18A |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 88 | Oh1E58 | User function input18-B | User Input18B |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 89 | Oh1E59 | User function input18-C | User Input18C |  | 0xFFFF | 0 | X/A | 0 | I/P | p. 168 |
| 90 | Oh1E5A | User function output18 | User Output18 |  | 2767-32767 | 0 | -/A | 0 | I/P | p. 168 |

## Table of Functions

### 8.14 Groups for LCD Keypad Only

### 8.14.1 Trip Mode (TRP Last-x)

| Code | Name | LCD Display | Setting Range | Initial Value | Ref. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 00 | Trip type display | Trip Name(x) | - | - | - |
| 01 | Frequency reference at <br> trip | Output Freq | - | - | - |
| 02 | Output current at trip | Output Current | - | - | - |
| 03 | Acceleration/Deceleration <br> state at trip | Inverter State | - | - | - |
| 04 | DC section state | DCLink Voltage | - | - | - |
| 05 | NTC temperature | Temperature | - | - | - |
| 06 | Input terminal state | DI Status | - | - | - |
| 07 | Output terminal state | DO Status | - | 00000000 | - |
| 08 | Trip time after Power on | Trip On Time | - | 000 | - |
| 09 | Trip time after operation <br> start | Trip Run Time | - | $0 / 00 / 0000: 00$ | - |
| 10 | Delete trip history | Trip Delete? | 0 | No | - |
|  | 1 | Yes |  |  |  |

### 8.14.2 Config Mode (CNF)

| Code | Name | LCD Display | Setting Range | Initial Value | Ref. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 00 | Jump code | Jump Code | $1-99$ | 42 | p.72 |
| 01 | Keypad language <br> selection | Language Sel | $0:$ English | $0:$ English | p. 269 |
| 02 | LCD constrast <br> adjustment | LCD Contrast | - | - | p.252 |
| 03 | Multi keypad ID | Multi KPD ID | $3-99$ | 3 | p. 167 |
| 10 | Inverter S/W version | Inv S/W Ver | - | - | p. 252 |
| 11 | LCD keypad S/W version | Keypad S/W Ver | - | p. 252 |  |
| 12 | LCD keypad title version | KPD TitleVer | - | - | p.252 |


| Code | Name | LCD Display | Setting Range |  | Initial Value | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Status window display item | Anytime Para | 0 | Frequency | 0 : Frequency | p. 270 |
| 21 | Monitor mode display item1 | Monitor Line-1 | 1 | Speed | 0 : Frequency | p. 270 |
| 22 | Monitor mode display item2 | Monitor Line-2 | 2 | Output Current | 2:Output Current | p. 270 |
|  |  |  | 3 | Output |  |  |
|  |  |  | 4 | Output |  |  |
|  |  |  | 5 | WHour |  |  |
|  |  |  | 6 | DCLink |  |  |
|  |  |  | 7 | DI State |  |  |
|  |  |  | 8 | DO State |  |  |
|  |  |  | 9 | V1 |  |  |
|  |  |  | 10 | V1 |  |  |
| 23 | Monitor mode display | Lline-3 | 13 | V2 | 3:Output | p 270 |
| 23 | item3 | Line-3 | 14 | V2 | Voltage | p. 270 |
|  |  |  | 15 | 12 |  |  |
|  |  |  | 16 | 12 Monitor(\%) |  |  |
|  |  |  | 17 | PID Output |  |  |
|  |  |  | 18 | PID Ref Value |  |  |
|  |  |  | 19 | PID Fdb Value |  |  |
|  |  |  | 20 | Torque |  |  |
|  |  |  | 21 | Torque Limit |  |  |
|  |  |  | 23 | Speed Limit |  |  |
| 24 |  | Mon Mode Init | 0 | No |  |  |
| 24 | initialization | Mon Mode Init | 1 | Yes |  | p. 270 |
| 30 | Option slot 1 type display | Option-1 Type | 0 | None | 0:None | p. 252 |
| 31 | Option slot 2 type display | Option-2 Type | 6 | Ethernet | 0:None | p. 252 |
| 32 | Option slot 3 type display | Option-3 Type | 9 | CANopen | 0:None | p. 252 |
|  |  |  | 0 | No |  |  |
|  |  |  | 1 | All Grp |  |  |
| 40 | Parameter initialization | Parameter Init | 2 | DRV Grp |  | p. 246 |
|  |  |  | 3 | BAS Grp |  |  |
|  |  |  | 4 | ADV Grp |  |  |

## Table of Functions

| Code | Name | LCD Display | Setting Range |  | Initial Value | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 5 | CON Grp |  |  |
|  |  |  | 6 | IN Grp |  |  |
|  |  |  | 7 | OUT Grp |  |  |
|  |  |  | 8 | COM Grp |  |  |
|  |  |  | 9 | APP Grp |  |  |
|  |  |  | 12 | PRT Grp |  |  |
|  |  |  | 13 | M2 Grp |  |  |
| 41 | Display changed Parameter | Changed Para | 0 | View All | 0:View All | p. 249 |
|  |  |  | 1 | View |  |  |
| 42 | Multi key item | Multi Key Sel | 0 | None | 0:None | p. 249 |
|  |  |  | 1 | JOG Key |  |  |
|  |  |  | 2 | Local/Remote |  |  |
|  |  |  | 3 | UserGrp SelKey |  |  |
|  |  |  | 4 | Multi KPD |  |  |
| 43 | Macro function item | Macro Select | 0 | None | 0:None | - |
| 44 | Trip history deletion | Erase All Trip | 0 | No | O:No | p. 252 |
|  |  |  | 1 | Yes |  |  |
| 45 | User registration code deletion | UserGrp AllDel | 0 | No | O:No | p. 249 |
|  |  |  | 1 | Yes |  |  |
| 46 | Read parameters | Parameter Read | 0 | No | O:No | p. 245 |
|  |  |  | 1 | Yes |  |  |
| 47 | Write parameters | Parameter Write | 0 | No | $0:$ No | p. 245 |
|  |  |  | 1 | Yes |  |  |
| 48 | Save parameters | Parameter Save | 0 | No | O:No | p. 245 |
|  |  |  | 1 | Yes |  |  |
| 50 | Hide parameter mode | View Lock Set | 0-9999 |  | Un-locked | p. 247 |
| 51 | Password for hiding parameter mode | View Lock Pw | 0-9999 |  | Password | p. 247 |
| 52 | Lock parameter edit | Key Lock Set | 0-9999 |  | Un-locked | p. 248 |
| 53 | Password for locking parameter edit | Key Lock Pw |  | 999 | Password | p. 248 |
| 60 | Additional title update | Add Title Up | 0 | No | O:No | p. 252 |
|  |  |  | 1 | Yes |  |  |
| 61 | Simple parameter setting | Easy Start On | 0 | No | 1:Yes | p. 249 |
|  |  |  | 1 | Yes |  |  |

SANTIERNO
Table of Functions

| Code | Name | LCD Display | Setting Range |  | Initial Value | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62 | Power consumption initialization | WHCount Reset | 0 | No | 0:No | p. 252 |
|  |  |  | 1 | Yes |  |  |
| 70 | Accumulated inverter motion time | On-time | Year/month/day hour:minute |  | - | p. 272 |
| 71 | Accumulated inverter operation time | Run-time | Year/month/day hour:minute |  | - | p. 272 |
| 72 | Accumulated inverter operation time initialization | Time Reset | 0 | No | 0:No | p. 272 |
|  |  |  | 1 | Yes |  |  |
| 74 | Accumulated cooling fan operation time | Fan Time | Year/month/day hour:minute |  | - | p. 272 |
|  | Reset of accumulated cooling fan operation time | Fan Time Rst | 0 | No | 0:No | p. 272 |
| 75 |  |  | 1 | Yes |  |  |

## Troubleshooting

## 9 Troubleshooting

This chapter explains how to troubleshoot a problem when inverter protective functions, fault trips, warning signals, or a fault occurs. If the inverter does not work normally after following the suggested troubleshooting steps, please contact the Enertronica Santerno S.p.A. customer service center.

### 9.1 Trips and Warnings

When the inverter detects a fault, it stops the operation (trips) or sends out a warning signal. When a trip or warning occurs, the keypad displays the information briefly. If the LCD keypad is used, detailed information is shown on the LCD display. Users can read the warning message at Pr. 90 . When more than 2 trips occur at roughly the same time, the keypad (basic keypad with 7 -segment display) displays the higher priority fault trip information, while the LCD keypad shows the information for the fault trip that occurred first.

The fault conditions can be categorized as follows:

- Level: When the fault is corrected, the trip or warning signal disappears and the fault is not saved in the fault history.
- Latch:When the fault is corrected and a reset input signal is provided, the trip or warning signal disappears.
- Fatal:When the fault is corrected, the fault trip or warning signal disappears only after the user turns off the inverter, waits until the charge indicator light goes off, and turns the inverter on again. If the the inverter is still in a fault condition after powering it on again, please contact the supplier or the Enertronica Santerno S.p.A. customer service center.


### 9.1.1 Fault Trips

Protection Functions for Output Current and Input Voltage

| Keypad <br> Display | LCD <br> Display | Type | Description |
| :--- | :--- | :--- | :--- |
| $D_{0}$ 0  <br> 0 0 0 <br> 0 Over Load Latch | Displayed when the motor overload trip is activated and <br> the actual load level exceeds the set level. Operates <br> when Pr. 20 is set to a value other than 0. |  |  |

,
SANTERNO

| Keypad |
| :--- | :--- | :--- | | LCD |
| :--- |
| Display | Type | Description |
| :--- |
| Display |

* Sinus H inverters rated for 4.0 kW or less (models 0007 and below) do not support the ground fault trip (GFT) feature. Therefore, an over current trip (OCT) or over voltage trip (OVT) may occur when there is a low-resistance ground fault.


## Protection Functions Using Abnormal Internal Circuit Conditions and External Signals

| Keypad Display | LCD Display | Type | Description |
| :---: | :---: | :---: | :---: |
| Prope | Over Heat | Latch | Displayed when the tempertature of the inverter heat sink exceeds the specified value. |

## Troubleshooting

| Keypad | LCD Display | Type |
| :--- | :--- | :--- |

## Protection Functions for Communication Options

| Keypad <br> Display | LCD <br> Display | Type | Description |
| :--- | :--- | :--- | :--- |
| 0 | Lost <br> Command | Level | Displayed when a frequency or operation command <br> error is detected during inverter operation by <br> controllers other than the keypad (e.g., using a terminal <br> block and a communication mode). Activate by setting <br> Pr.12 to any value other than 0. |

### 9.1.2 Warning Messages

| Keypad Display | LCD Display | Description |
| :---: | :---: | :---: |
| 970 090 0 | Over Load | Displayed when the motor is overloaded. Operates when Pr. 17 is set to 1 . To operate, select 5 . Set the digital output terminal or relay (OU. 31 or OU.33) to 5 (Over Load) to receive overload warning output signals. |
|   <br> 0 0 <br> 8 0 <br> 0 0 | Under Load | Displayed when the motor is underloaded. Operates when Pr. 25 is set to 1 . Set the digital output terminal or relay (OU.31 or OU.33) to 7 (Under Load) to receive underload warning output signals. |
|  | INV Over Load | Displayed when the overload time equivalent to $60 \%$ of the inverter overheat protection (inverter IOLT) level, is accumulated. Set the digital output terminal or relay (OU. 31 or OU.33) to 6 (IOL) |

## Troubleshooting

|  |  | to receive inverter overload warning output signals. |
| :---: | :---: | :---: |
| $\begin{array}{llll} \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$ | Lost <br> Command | Lost command warning alarm occurs even with Pr. 12 set to 0. The warning alarm occurs based on the condition set at Pr.13-15. Set the digital output terminal or relay (OU. 31 or OU.33) to 13 (Lost Command) to receive lost command warning output signals. If the communication settings and status are not suitable for P2P, a Lost Command alarm occurs. |
| $\begin{array}{llll} \\ 0 & 00 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}$ | Fan Warning | Displayed when an error is detected from the cooling fan while Pr. 79 is set to 1 . Set the digital output terminal or relay (OU. 31 or OU.33) to 8 (Fan Warning) to receive fan warning output signals |
| (1) | Fan Exchange | An alarm occurs when the value set at PRT-86 is less than the value set at PRT-87. To receive fan exchange output signals, set the digital output terminal or relay (OUT-31 or OUT-33) to 38 (Fan Exchange). |
|  | CAP <br> Exchange | An alarm occurs when the value set at PRT-63 is less than the value set at PRT-62 (the value set at PRT-61 must be 2 (Pre Diag)). To receive CAP exchange signals, set the digital output terminal or relay (OUT-31 or OUT-33) to 36 (CAP Exchange). |
|  | DB Warn \%ED | Displayed when the DB resistor usage rate exceeds the set value. Set the detection level at Pr. 66. |
| OBD | Retry Tr Tune | Tr tune error warning alarm is activated when Dr. 9 is set to 4. The warning alarm occurs when the motor's rotor time constant (Tr) is either too low or too high. |

### 9.2 Troubleshooting FaultTrips

When a fault trip or warning occurs due to a protection function, refer to the following table for possible causes and remedies.

| Type | Cause | Remedy |
| :--- | :--- | :--- |
| Over Load | The load is greater than the motor's <br> rated capacity. | Ensure that the motor and inverter <br> have appropriate capacity ratings. |
|  | The set value for the overload trip level <br> (Pr.21) is too low. | Increase the set value for the overload <br> trip level. |
| Under Load | There is a motor-load connection <br> problem. | Replace the motor and inverter with <br> models with lower capacity. |
|  | The set value for underload level (Pr.29, <br> Pr.30) is less than the system's minimum <br> load. | Reduce the set value for the <br> underload level. |
|  | Acc/Dec time is too short, compared to <br> load inertia (GD2). | Increase Acc/Dec time. |
|  | The inverter load is greater than the | Replace the inverter with a model that |


| Type | Cause | Remedy |
| :---: | :---: | :---: |
|  | rated capacity. | has increased capacity. |
|  | The inverter supplied an output while the motor was idling. | Operate the inverter after the motor has stopped or use the speed search function (Cn.60). |
|  | The mechanical brake of the motor is operating too fast. | Check the mechanical brake. |
| Over Voltage | Deceleration time is too short for the load inertia (GD2). | Increase the acceleration time. |
|  | A generative load occurs at the inverter output. | Use the braking unit. |
|  | The input voltage is too high. | Determine if the input voltage is above the specified value. |
| Low Voltage | The input voltage is too low. | Determine if the input voltage is below the specificed value. |
|  | A load greater than the power capacity is connected to the system (e.g., a welder, direct motor connection, etc.) | Increase the power capacity. |
|  | The magnetic contactor connected to the power source has a faulty connection. | Replace the magnetic contactor. |
| Low Voltage2 | The input voltage has decreased during the operation. | Determine if the input voltage is above the specified value. |
|  | An input phase-loss has occurred. | Check the input wiring. |
|  | The power supply magnetic contactor is faulty. | Replace the magnetic contractor. |
| Ground Trip | A ground fault has occurred in the inverter output wiring. | Check the output wiring. |
|  | The motor insulation is damaged. | Replace the motor. |
| E-Thermal | The motor has overheated. | Reduce the load or operation frequency. |
|  | The inverter load is greater than the rated capacity. | Replace the inverter with a model that has increased capacity. |
|  | The set value for electronic thermal protection is too low. | Set an appropriate electronic thermal level. |
|  | The inverter has been operated at low speed for an extended duration. | Replace the motor with a model that supplies extra power to the cooling fan. |
| Output Phase Open | The magnetic contactor on the output side has a connection fault. | Check the magnetic contactor on the output side. |
|  | The output wiring is faulty. | Check the output wiring. |
| Input Phase Open | The magnetic contactor on the input side has a connection fault. | Check the magnetic contactor on the input side. |
|  | The input wiring is faulty. | Check the input wiring. |
|  | The DC link capacitor needs to be | Replace the DC link capacitor. Contact |

## Troubleshooting

| Type | Cause | Remedy |
| :---: | :---: | :---: |
|  | replaced. | the retailer or the Enertronica Santerno S.p.A. customer service center. |
| Inverter OLT | The load is greater than the rated motor capacity. | Replace the motor and inverter with models that have increased capacity. |
|  | The torque boost level is too high. | Reduce the torque boost level. |
| Over Heat | There is a problem with the cooling system. | Determine if a foreign object is obstructing the air inlet, outlet, or vent. |
|  | The inverter cooling fan has been operated for an extended period. | Replace the cooling fan. |
|  | The ambient temperature is too high. | Keep the ambient temperature below $50^{\circ} \mathrm{C}$. |
| Over | Output wiring is short-circuited. | Check the output wiring. |
| Current2 | There is a fault with the electronic semiconductor (IGBT). | Do not operate the inverter. Contact the retailer or the Enertronica Santerno S.p.A. customer service center. |
| NTC Open | The ambient temperature is too low. | Keep the ambient temperature above $-10^{\circ} \mathrm{C}$. |
|  | There is a fault with the internal temperature sensor. | Contact the retailer or the Enertronica Santerno S.p.A. customer service center. |
| FAN Lock | A foreign object is obstructing the fan's air vent. | Remove the foreign object from the air inlet or outlet. |
|  | The cooling fan needs to be replaced. | Replace the cooling fan. |
| IP54 FAN Trip | The fan connector is not connected. | Connect the fan connector. |
|  | The fan connector needs to be replaced. | Replace the fan connector. |

### 9.3 Troubleshooting Other Faults

When a fault other than those identified as fault trips or warnings occurs, refer to the following table for possible causes and remedies.

| Type | Cause | Remedy |
| :--- | :--- | :--- |
| Parameters <br> cannot be set. | The inverter is in operation (driving <br> mode). | Stop the inverter to change to <br> program mode and set the <br> parameter. |
|  | The parameter access is incorrect. | Check the correct parameter access <br> level and set the parameter. |


| Type | Cause | Remedy |
| :---: | :---: | :---: |
|  | The password is incorrect. | Check the password, disable the parameter lock and set the parameter. |
|  | Low voltage is detected. | Check the power input to resolve the low voltage and set the parameter. |
| The motor does not rotate. | The frequency command source is set incorrectly. | Check the frequency command source setting. |
|  | The operation command source is set incorrectly. | Check the operation command source setting. |
|  | Power is not supplied to the terminal R/S/T. | Check the terminal connections $\mathrm{R} / \mathrm{S} / \mathrm{T}$ and $\mathrm{U} / \mathrm{V} / \mathrm{W}$. |
|  | The charge lamp is turned off. | Turn on the inverter. |
|  | The operation command is off. | Turn on the operation command (RUN). |
|  | The motor is locked. | Unlock the motor or lower the load level. |
|  | The load is too high. | Operate the motor independently. |
|  | An emergency stop signal is input. | Reset the emergency stop signal. |
|  | The wiring for the control circuit terminal is incorrect. | Check the wiring for the control circuit terminal. |
|  | The input option for the frequency command is incorrect. | Check the input option for the frequency command. |
|  | The input voltage or current for the frequency command is incorrect. | Check the input voltage or current for the frequency command. |
|  | The PNP/NPN mode is selected incorrectly. | Check the PNP/NPN mode setting. |
|  | The frequency command value is too low. | Check the frequency command and input a value above the minimum frequency. |
|  | The [STOP/RESET] key is pressed. | Check that the stoppage is normal, if so resume operation normally. |
|  | Motor torque is too low. | Change the operation modes (V/F, IM, and Sensorless). If the fault remains, replace the inverter with a model with increased capacity. |
| The motor rotates in the opposite direction to the command. | The wiring for the motor output cable is incorrect. | Determine if the cable on the output side is wired correctly to the phase ( $\mathrm{U} / \mathrm{V} / \mathrm{W}$ ) of the motor. |
|  | The signal connection between the control circuit terminal (forward/reverse rotation) of the inverter and the forward/reverse rotation signal on the control panel side is incorrect. | Check the forward/reverse rotation wiring. |

## Troubleshooting

| Type | Cause | Remedy |
| :---: | :---: | :---: |
| The motor only rotates in one direction. | Reverse rotation prevention is selected. | Remove the reverse rotation prevention. |
|  | The reverse rotation signal is not provided, even when a 3-wire sequence is selected. | Check the input signal associated with the 3-wire operation and adjust as necessary. |
| The motor is overheating. | The load is too heavy. | Reduce the load. Increase the Acc/Dec time. |
|  |  | Check the motor parameters and set the correct values. |
|  |  | Replace the motor and the inverter with models with appropriate capacity for the load. |
|  | The ambient temperature of the motor is too high. | Lower the ambient temperature of the motor. |
|  | The phase-to-phase voltage of the motor is insufficient. | Use a motor that can withstand phase-to-phase voltages surges greater than the maximum surge voltage. |
|  |  | Only use motors suitable for apllications with inverters. |
|  |  | Connect the AC reactor to the inverter output (set the carrier frequency to 2 kHz ). |
|  | The motor fan has stopped or the fan is obstructed with debris. | Check the motor fan and remove any foreign objects. |
| The motor stops during acceleration or when connected to load. | The load is too high. | Reduce the load. |
|  |  | Replace the motor and the inverter with models with capacity appropriate for the load. |
| The motor does not accelerate. <br> /The acceleration time is too long. | The frequency command value is low. | Set an appropriate value. |
|  | The load is too high. | Reduce the load and increase the acceleration time. Check the mechanical brake status. |
|  | The acceleration time is too long. | Change the acceleration time. |
|  | The combined values of the motor properties and the inverter parameter are incorrect. | Change the motor related parameters. |
|  | The stall prevention level during acceleration is low. | Change the stall prevention level. |
|  | The stall prevention level during operation is low. | Change the stall prevention level. |
|  | Starting torque is insufficient. | Change to vector control operation |

ENERTRONICA
SANTERNO

| Type | Cause | Remedy |
| :---: | :---: | :---: |
|  |  | mode. If the fault is still not corrected, replace the inverter with a model with increased capacity. |
| Motor speed varies during operation. | There is a high variance in load. | Replace the motor and inverter with models with increased capacity. |
|  | The input voltage varies. | Reduce input voltage variation. |
|  | Motor speed variations occur at a specific frequency. | Adjust the output frequency to avoid a resonance area. |
| The motor rotation is different from the setting. | The V/F pattern is set incorrectly. | Set a V/F pattern that is suitable for the motor specification. |
| The motor deceleration time is too long even with Dynamic Braking (DB) resistor connected. | The deceleration time is set too long. | Change the setting accordingly. |
|  | The motor torque is insufficient. | If motor parameters are normal, it is likely to be a motor capacity fault. Replace the motor with a model with increased capacity. |
|  | The load is higher than the internal torque limit determined by the rated current of the inverter. | Replace the inverter with a model with increased capacity. |
| Operation is difficult in underload applications. | The carrier frequency is too high. | Reduce the carrier frequency. |
|  | Over-excitation has occurred due to an inaccurate $\mathrm{V} / \mathrm{F}$ setting at low speed. | Reduce the torque boost value to avoid over-excitation. |
| While the inverter is in operation, a control unit malfunctions or noise occurs. | Noise occurs due to switching inside the inverter. | Change the carrier frequency to the minimum value. |
|  |  | Install a micro surge filter in the inverter output. |
| When the inverter is operating, the earth leakage breaker is activated. | An earth leakage breaker will interrupt the supply if current flows to ground during inverter operation. | Connect the inverter to a ground terminal. |
|  |  | Check that the ground resistance is less than 1008 for 2S/T inverters and less than $10 \Omega$ for $4 T$ inverters. |
|  |  | Check the capacity of the earth leakage breaker and make the appropriate connection, based on the rated current of the inverter. |
|  |  | Lower the carrier frequency. |
|  |  | Make the cable length between the inverter and the motor as short as |

## Troubleshooting

| Type | Cause | Remedy |
| :---: | :---: | :---: |
|  |  | possible. |
| The motor vibrates | Phase-to-phase voltage of 3-phase power source is not balanced. | Check the input voltage and balance the voltage. |
| severely and does not rotate normally. |  | Check and test the motor's insulation. |
| The motor makes humming, or | Resonance occurs between the motor's natural frequency and the carrier frequency. | Slightly increase or decrease the carrier frequency. |
| loud noises. | Resonance occurs between the motor's natural frequency and the inverter's | Slightly increase or decrease the carrier frequency. |
|  | output frequency. | Use the frequency jump function to avoid the frequency band where resonance occurs. |
| The motor vibrates/hunts. | The frequency input command is an external, analog command. | In situations of noise inflow on the analog input side that results in command interference, change the input filter time constant (In.07). |
|  | The wiring length between the inverter and the motor is too long. | Ensure that the total cable length between the inverter and the motor is less than 200 m ( 50 m for motors rated 2.2 kW or lower). |
|  |  | Adjust the DC braking parameter. |
| not come to a complete stop | because DC braking is not operating normally. | Increase the set value for the DC braking current. |
| when the inverter output stops. |  | Increase the set value for the DC braking stopping time. |
| The output frequency does | The frequency reference is within the jump frequency range. | Set the frequency reference higher than the jump frequency range. |
| not increase to the frequency reference. | The frequency reference is exceeding the upper limit of the frequency command. | Set the upper limit of the frequency command higher than the frequency reference. |
|  | Because the load is too heavy, the stall prevention function is working. | Replace the inverter with a model with increased capacity. |
| The cooling fan does not rotate. | The control parameter for the cooling fan is set incorrectly. | Check the control parameter setting for the cooling fan. |

## 10 Maintenance

This chapter explains how to replace the cooling fan, the regular inspections to complete, and how to store and dispose of the product. An inverter is vulnerable to environmental conditions and faults also occur due to component wear and tear. To prevent breakdowns, please follow the maintenance recommendations in this section.

## Caution

- Before you inspect the product, read all safety instructions contained in this manual.
- Before you clean the product, ensure that the power is off.
- Clean the inverter with a dry cloth. Cleaning with wet cloths, water, solvents, or detergents may result in electric shock or damage to the product.


### 10.1 Regular Inspection Lists

### 10.1.1 Daily Inspections

| Inspection area | Inspection item | Inspection details | Inspection method | Judgment standard | Inspection equipment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All | Ambient environment | Is the ambient temperature and humidity within the design range, and is there any dust or foreign objects present? | refer to 1.3 <br> Part Names for <br> IP66on page <br> $\underline{21 .}$ | No icing (ambient temperature: -$10-+40$ ) and no condensation (ambient humidity below 50\%) | Thermometer, hygrometer, recorder |
|  | Inverter | Is there any abnormal vibration or noise? | Visual inspection | No abnormality |  |
|  | Power voltage | Are the input and output voltages normal? | Measure voltages between R/ S/ T-phases in. the inverter terminal block. | refer to 11.1 Input and Output Specification on page 417. | Digital multimeter tester |


| Inspection area | Inspection item | Inspection details | Inspection method | Judgment standard | Inspection equipment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input/Output circuit | Smoothing capacitor | Is there any leakage from the inside? <br> Is the capacitor swollen? | Visual inspection | No abnormality | - |
| Cooling system | Cooling fan | Is there any abnormal vibration or noise? | Turn off the system and check operation by rotating the fan manually. | Fan rotates smoothly | - |
| Display | Measuring device | Is the display value normal? | Check the display value on the panel. | Check and manage specified values. | Voltmeter, ammeter, etc. |
| Motor | All | Is there any abnormal vibration or noise? <br> Is there any abnormal smell? | Visual inspection <br> Check for overheating or damage. | No abnormality | - |

### 10.1.2 Annual Inspections

| Inspection <br> area | Inspection <br> item | Inspection <br> details | Inspection <br> method | Judgement <br> standard | Inspection <br> equipment |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Input/Output <br> circuit | All | Megger test <br> (between <br> input/output <br> terminals and <br> and earth <br> terminal) | Disconnect <br> inverter and <br> short <br> R/S/T/U/V/W <br> terminals, and <br> then measure <br> from each <br> terminal to <br> the ground <br> terminal using <br> a Megger. | Must be <br> above 5 M $\Omega$ | DC 500 V Megger |
|  |  |  | Tighten up all <br> screws. | No <br> abnormality |  |


| Inspection area | Inspection item | Inspection details | Inspection method | Judgement standard | Inspection equipment |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | device? |  |  |  |
|  |  | Is there any evidence of parts overheating? | Visual inspection |  |  |
|  | Cable connections | Are there any corroded cables? | Visual inspection | No abnormality | - |
|  |  | Is there any damage to cable insulation? |  |  |  |
|  | Terminal block | Is there any damage? | Visual inspection | No abnormality | - |
|  | Smoothing condenser | Measure electrostatic capacity. | Measure with capacity meter. | Rated capacity over 85\% | Capacity meter |
|  | Relay | Is there any chattering noise during operation? | Visual inspection | No abnormality | - |
|  |  | Is there any damage to the contacts? | Visual inspection |  |  |
|  | Braking resistor | Is there any damage from resistance? | Visual inspection | No abnormality | Digital multimeter / analog tester |
|  |  | Check for disconnection. | Disconnect one side and measure with a tester. | Must be within $\pm 10 \%$ of the rated value of the resistor. |  |
| Control circuit Protection circuit | Operation check | Check for output voltage imbalance while the inverter is in operation. | Measure voltage between the inverter output terminal U/ V/ W. | Balance the voltage between phases: within 4V for 2S/T series and within 8V for 4T series. | Digital multimeter or DC voltmeter |


| Inspection area | Inspection item | Inspection details | Inspection method | Judgement standard | Inspection equipment |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Is there an error in the display circuit after the sequence protection test? | Test the inverter ouput protection in both short and open circuit conditions. | The circuit must work according to the sequence. |  |
| Cooling system | Cooling fan | Are any of the fan parts loose? | Check all connected parts and tighten all screws. | No abnormality | - |
| Display | Display device | Is the display value normal? | Check the command value on the display device. | Specified and managed values must match. | Voltmeter, Ammeter, etc. |

### 10.1.3 Bi-annual Inspections

| Inspection <br> area | Inspection <br> item | Inspection <br> details | Inspection <br> method | Judgment <br> standard | Inspection <br> equipment |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Motor | Insulation <br> resistance | Megger test <br> (between the <br> input, output <br> and earth <br> terminals). | Disconnect <br> the cables for <br> terminals U/V/ | Must be <br> above 5 M $\Omega$ <br> wiring. test the | DC 500 V Megger |

## Caution

Do not run an insulation resistance test (Megger) on the control circuit as it may result in damage to the product.

### 10.2 Storage and Disposal

### 10.2.1 Storage

If you are not using the product for an extended period, store it in the following way:

- Store the product in the same environmental conditions as specified for operation (refer to 1.3 Part Names for IP66 on page 21).
- When storing the product for a period longer than 3 months, store it between $10^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, to prevent depletion of the electrolytic capacitor.
- Do not expose the inverter to snow, rain, fog, or dust.
- Package the inverter in a way that prevents contact with moisture. Keep the moisture level below $70 \%$ in the package by including a desiccant, such as silica gel.


### 10.2.2 Disposal

When disposing of the product, categorize it as general industrial waste. Recyclable materials are included in the product, so recycle them whenever possible. The packing materials and all metal parts can be recycled. Although plastic can also be recycled, it can be incinerated under contolled conditions in some regions.

## (1) Caution

If the inverter has not been operated for a long time, capacitors lose their charging characteristics and are depleted. To prevent depletion, turn on the product once a year and allow the device to operate for $30-60 \mathrm{~min}$. Run the device under no-load conditions.

## 11 Technical Specification

### 11.1 Input and Output Specification

## Sinus H 2S IP20

| Model SINUS H xxxx 2s- |  |  | 0001 | 0002 | 0003 | 0005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 0.5 | 1.0 | 2.0 | 3.0 |
|  |  | kW | 0.4 | 0.75 | 1.5 | 2.2 |
|  | Normal load | HP | 1.0 | 2.0 | 3.0 | 5.0 |
|  |  | kW | 0.75 | 1.5 | 2.2 | 3.7 |
| Rated output | Rated capacity (kVA) | Heavy load | 1.0 | 1.9 | 3.0 | 4.2 |
|  |  | Normal load | 1.2 | 2.3 | 3.8 | 4.6 |
|  | Rated current (A) | Heavy load | 2.5 | 5.0 | 8.0 | 11.0 |
|  |  | Normal load | 3.1 | 6.0 | 9.6 | 12.0 |
|  | Output frequency |  | $\begin{array}{\|l} \begin{array}{l} 0-400 ~ H z \\ \text { (IM Sensorless: } 0-120 ~ H z ; ~ P M ~ S e n s o r l e s s: ~ \\ 0-180 ~ H z) ~ \end{array} \\ \hline \end{array}$ |  |  |  |
|  | Output voltage (V) |  | 3 -phase 200-240 V |  |  |  |
| Rated input | Working voltage (V) |  | Single phase 200-240 V AC (-15\% to +10\%) |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |
|  | Rated current (A) | Heavy load | 4.4 | 9.3 | 15.6 | 21.7 |
|  |  | Normal load | 5.8 | 11.7 | 19.7 | 24.0 |
| Weight (lb/kg) |  |  | 2.5/1.14 | 3.9/1.76 | 3.9/1.76 | 4.9/2.22 |

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn. 04 and on the input supply voltage. See Continuous Rated Current Derating.


## ENERTRONICA <br> SANTERNO

## Sinus H 2T (0.4-4kW) IP20

| Model SINUS H xxxx 2T- |  |  | 0001 | 0002 | 0003 | 0005 | 0007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 0.5 | 1.0 | 2.0 | 3.0 | 5.4 |
|  |  | kW | 0.4 | 0.75 | 1.5 | 2.2 | 4.0 |
|  | Normal load | HP | 1.0 | 2.0 | 3.0 | 5.0 | 7.5 |
|  |  | kW | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 |
| Rated output | Rated capacity (kVA) | Heavy load | 1.0 | 1.9 | 3.0 | 4.2 | 6.5 |
|  |  | Normal load | 1.2 | 2.3 | 3.8 | 4.6 | 6.9 |
|  | Rated current (A) | $\begin{aligned} & \text { Heavy } \\ & \text { load } \end{aligned}$ | 2.5 | 5.0 | 8.0 | 11.0 | 17.0 |
|  |  | Normal load | 3.1 | 6.0 | 9.6 | 12.0 | 18.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 Hz) |  |  |  |  |
|  | Output voltage (V) |  | 3-phase 200-240 V |  |  |  |  |
| Rated <br> input | Working voltage (V) |  | 3-phase 200-240 VAC (-15\% to +10\%) |  |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}$ ( $\pm 5 \%$ ) |  |  |  |  |
|  | Rated current <br> (A) | Heavy load | 2.2 | 4.9 | 8.4 | 11.8 | 18.5 |
|  |  | Normal load | 3.0 | 6.3 | 10.8 | 13.1 | 19.4 |
| Weight (lb/kg) |  |  | 2/0.9 | 2/0.9 | 2.86/1.3 | 3.3/1.5 | 4.4/2.0 |

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn. 04 and on the input supply voltage. See Continuous Rated Current Derating.


## Technical Specification

## maname <br> SANTERNO

Sinus H 2 T ( $\mathbf{5 . 5 - 1 5 \mathrm { kW } \text { ) IP20 }}$

| Model SINUS H xxxx 2T- |  |  | 0011 | 0014 | 0017 | 0020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 7.5 | 10 | 15 | 20 |
|  |  | kW | 5.5 | 7.5 | 11 | 15 |
|  | Normal load | HP | 10 | 15 | 20 | 25 |
|  |  | kW | 7.5 | 11 | 15 | 18.5 |
| Rated output | Rated capacity (kVA) | Heavy load | 9.1 | 12.2 | 17.5 | 22.9 |
|  |  | Normal load | 11.4 | 15.2 | 21.3 | 26.3 |
|  | $\begin{array}{\|l\|} \hline \text { Rated } \\ \text { current (A) } \end{array}$ | Heavy load | 24.0 | 32.0 | 46.0 | 60.0 |
|  |  | Normal load | 30.0 | 40.0 | 56.0 | 69.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 Hz) |  |  |  |
|  | Output voltage (V) |  | 3 phase 200-240V |  |  |  |
| Rated input | Working voltage (V) |  | 3 phase 200-240VAC (-15\% to +10\%) |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |
|  | Rated current (A) | Heavy <br> load | 25.8 | 34.9 | 50.8 | 66.7 |
|  |  | Normal load | 32.7 | 44.2 | 62.3 | 77.2 |
| Weight (lb/kg) |  |  | 7.3/3.3 | 7.3/3.3 | 10/4.6 | 16/7.1 |

- The standard motor capacity is based on a standard 4-pole motor
- The rated output current is limited based on the carrier frequency set at Cn .04 and on the input supply voltage. See Continuous Rated Current Derating.


## ENERTRONICA <br> SANTERNO

## Sinus H 4T ( $0.4-4 \mathrm{~kW}$ ) IP20

| Model SINUS H xxxx 4T- |  |  | 0001 | 0002 | 0003 | 0005 | 0007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 0.5 | 1.0 | 2.0 | 3.0 | 5.4 |
|  |  | kW | 0.4 | 0.75 | 1.5 | 2.2 | 4.0 |
|  | Normal load | HP | 1.0 | 2.0 | 3.0 | 5.0 | 7.5 |
|  |  | kW | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 |
| Rated output | Rated capacity (kVA) | Heavy load | 1.0 | 1.9 | 3.0 | 4.2 | 6.5 |
|  |  | Normal load | 1.5 | 2.4 | 3.9 | 5.3 | 7.6 |
|  | Rated current (A) | Heavy load | 1.3 | 2.5 | 4.0 | 5.5 | 9.0 |
|  |  | Normal load | 2.0 | 3.1 | 5.1 | 6.9 | 10.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 |  |  |  |  |
|  | Output voltage (V) |  | 3-phase 380-480V |  |  |  |  |
| Rated input | Working voltage (V) |  | 3 -phase 380-480VAC (-15\% to +10\%) |  |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}$ ( $\pm 5 \%$ ) |  |  |  |  |
|  | Rated current (A) | Heavy load | 1.1 | 2.4 | 4.2 | 5.9 | 9.8 |
|  |  | Normal load | 2.0 | 3.3 | 5.5 | 7.5 | 10.8 |
| Weight (lb/kg) |  |  | 2.6/1.18 | 2.6/1.18 | 3.9/1.77 | 4/1.80 | 4.9/2.23 |

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn .04 and on the input supply voltage. See Continuous Rated Current Derating.

Technical Specification

## ? <br> SANTERNO

## Sinus H 4T (5.5-22kW) IP2O

| Model SINUS H xxxx 4T- |  |  | 0011 | 0014 | 0017 | 0020 | 0025 | 0030 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 7.5 | 10 | 15 | 20 | 25 | 30 |
|  |  | kW | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
|  | Normal load | HP | 10 | 15 | 20 | 25 | 30 | 40 |
|  |  | kW | 7.5 | 11 | 15 | 18.5 | 22 | 30 |
| Rated output | Rated capacity (kVA) | Heavy load | 9.1 | 12.2 | 18.3 | 22.9 | 29.7 | 34.3 |
|  |  | Normal load | 12.2 | 17.5 | 22.9 | 29.0 | 33.5 | 44.2 |
|  | Rated current (A) | Heavy load | 12.0 | 16.0 | 24.0 | 30.0 | 39.0 | 45.0 |
|  |  | Normal load | 16.0 | 23.0 | 30.0 | 38.0 | 44.0 | 58.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 Hz) |  |  |  |  |  |
|  | Output voltage (V) |  | 3-phase 380-480V |  |  |  |  |  |
| Rated input | Working voltage (V) |  | 3-phase 380-480VAC (-15\% to +10\%) |  |  |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}$ ( $\pm 5 \%$ ) |  |  |  |  |  |
|  | Rated current (A) | Heavy load | 12.9 | 17.5 | 26.5 | 33.4 | 43.6 | 50.7 |
|  |  | Normal load | 17.5 | 25.4 | 33.4 | 42.5 | 49.5 | 65.7 |
| Weight (lb/kg) |  |  | 7.3/3.3 | 7.5/3.4 | 10.1/4.6 | 10.5/4.8 | 16.5/7.5 | 16.5/7.5 |

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn. 04 and on the input supply voltage. See Continuous Rated Current Derating.


## Sinus H 4T (30kW) IP20

| Model SINUS H xxxx 4T- |  |  | 0034 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 40 |  |  |  |  |
|  |  | kW | 30 |  |  |  |  |
|  | Normal load | HP | 50 |  |  |  |  |
|  |  | kW | 37 |  |  |  |  |
| Rated output | Rated | Heavy load | 46 |  |  |  |  |
|  | capacity (kVA) | Normal load | 55 |  |  |  |  |
|  | Rated current <br> (A) | Heavy load | 61 |  |  |  |  |
|  |  | Normal load | 75 |  |  |  |  |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 Hz) |  |  |  |  |
|  | Output voltage (V) |  | 3-phase 380-480 V |  |  |  |  |
| Rated input | Working voltage (V) |  | 3 -phase 380-480 VAC (-15\% to +10\%) |  |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |
|  | Rated current (A) | Heavy load | 56 |  |  |  |  |
|  |  | Normal load | 69 |  |  |  |  |
| Weight (lb/kg) |  |  | 26/11.8 |  |  |  |  |

*Sinus H inverter rated at 30kW (model 0034) does not support I/O extensions or IP66 certification.

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn. 04 and on the input supply voltage. See Continuous Rated Current Derating.


## Technical Specification

SINUS H 2T Sizes IP66_A, IP66_B

| Model SINUS H xxxx 2T- |  |  | 0001 | 0002 | 0003 | 0005 | 0007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 0.5 | 1.0 | 2.0 | 3.0 | 5.4 |
|  |  | kW | 0.4 | 0.75 | 1.5 | 2.2 | 4.0 |
| Rated output | Rated capacity (kVA) | Heavy load | 1.0 | 1.9 | 3.0 | 4.2 | 6.5 |
|  | Rated current (A) | Heavy load | 2.5 | 5.0 | 8.0 | 11.0 | 17.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 Hz) |  |  |  |  |
|  | Output voltage (V) |  | 3-phase 200-240 V |  |  |  |  |
| Rated input | Working voltage (V) |  | 3-phase 200-240 VAC (-15\% to +10\%) |  |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |
|  | Rated current (A) | Heavy load | 2.2 | 4.9 | 8.4 | 11.8 | 18.5 |
| Weight (lb/kg) |  |  | 7.9/3.6 | 7.9/3.6 | 11.5/5.2 | 11.7/5.3 | 12.3/5.6 |

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn .04 and on the input supply voltage. See Continuous Rated Current Derating.


## SINUS H 2T Sizes IP66_C, IP66_D, IP66_E

| Model SINUS H xxxx 2T- |  |  | 0011 | 0014 | 0017 | 0020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 7.5 | 10 | 15 | 20 |
|  |  | kW | 5.5 | 7.5 | 11 | 15 |
| Rated output | Rated capacity <br> (kVA) | Heavy load | 9.1 | 12.2 | 17.5 | 22.9 |
|  | Rated current (A) | Heavy load | 24.0 | 32.0 | 46.0 | 60.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ (IM Sensorless: $0-120 \mathrm{~Hz}$; PM Sensorless: $0-180 \mathrm{~Hz}$ ) |  |  |  |
|  | Output voltage (V) |  | 3 phase 200-240V |  |  |  |
| Rated input | Working voltage (V) |  | 3 phase 200-240VAC (-15\% to $+10 \%$ ) |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |
|  | Rated current (A) | Heavy load | 25.8 | 34.9 | 50.8 | 66.7 |
| Weight (lb $/ \mathrm{kg}$ ) |  |  | 19.8/9.0 | 19.8/9.0 | 21.2/9.6 | 26.7/12.1 |

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn .04 and on the input supply voltage. See Continuous Rated Current Derating.


## Technical Specification

## matroun <br> SANTERNO

SINUS H 4T, Sizes IP66_A,IP66_B

| Model SINUS H xxxx 4T- |  |  | 0001 | 0002 | 0003 | 0005 | 0007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 0.5 | 1.0 | 2.0 | 3.0 | 5.4 |
|  |  | kW | 0.4 | 0.75 | 1.5 | 2.2 | 4.0 |
| Rated output | $\begin{aligned} & \text { Rated } \\ & \text { capacity (kVA) } \end{aligned}$ | Heavy load | 1.0 | 1.9 | 3.0 | 4.2 | 6.5 |
|  | Rated current (A) | Heavy load | 1.3 | 2.5 | 4.0 | 5.5 | 9.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 Hz) |  |  |  |  |
|  | Output voltage (V) |  | 3-phase 380-480V |  |  |  |  |
| Rated input | Working voltage (V) |  | 3-phase 380-480VAC (-15\% to +10\%) |  |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |
|  | Rated current <br> (A) | Heavy load | 1.1 | 2.4 | 4.2 | 5.9 | 9.8 |
| Weight (lb/kg) |  |  | 8.2/3.7 | 8.2/3.7 | 11.7/5.3 | 12.1/5.5 | 12.3/5.6 |

- The standard motor capacity is based on a standard 4-pole motor
- The rated output current is limited based on the carrier frequency set at Cn .04 and on the input supply voltage. See Continuous Rated Current Derating.


## SINUS H 4T, Sizes IP66_C, IP66_D, IP66_E

| Model SINUS H xxxx 4T- |  |  | 0011 | 0014 | 0017 | 0020 | 0025 | 0025 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applied motor | Heavy load | HP | 7.5 | 10 | 15 | 20 | 25 | 30 |
|  |  | kW | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| Rated output | Rated capacity | Heavy load | 9.1 | 12.2 | 18.3 | 22.9 | 29.7 | 34.3 |
|  | Rated current (A) | Heavy load | 12.0 | 16.0 | 24.0 | 30.0 | 39.0 | 45.0 |
|  | Output frequency |  | $0-400 \mathrm{~Hz}$ <br> (IM Sensorless: 0-120 Hz; PM Sensorless: 0-180 Hz) |  |  |  |  |  |
|  | Output voltage (V) |  | 3-phase 380-480V |  |  |  |  |  |
| Rated input | Working voltage (V) |  | 3-phase 380-480VAC (-15\% to +10\%) |  |  |  |  |  |
|  | Input frequency |  | $50-60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |  |
|  | Rated current (A) | Heavy load | 12.9 | 17.5 | 26.5 | 33.4 | 43.6 | 50.7 |
| Weight (lb/kg) |  |  | 19.4/8.8 | 19.6/8.9 | 21.2/9.6 | 21.6/9.8 | 27.3/12.4 | 27.3/12.4 |

- The standard motor capacity is based on a standard 4-pole motor.
- The rated output current is limited based on the carrier frequency set at Cn. 04 and on the input supply voltage. See Continuous Rated Current Derating.


### 11.2 Product Specification Details

| Items |  |  | Description |  |
| :---: | :---: | :---: | :---: | :---: |
| Control | Control method |  | V/F control, slip compensation, sensorless vector |  |
|  | Frequency settings power resolution |  | Digital command: 0.01 Hz <br> Analog command: 0.06 Hz ( 60 Hz standard) |  |
|  | Frequency accuracy |  | 1\% of maximum output frequency |  |
|  | V/F pattern |  | Linear, square reduction, user V/F |  |
|  | Overload capacity |  | Heavy load rated current: 150\% 1 min, normal load rated current: 120\% 1 min, Peak current: 200\% 4 sec (0034 model excluded) |  |
|  | Torque boost |  | Manual torque boost, automatic torque boost |  |
| Operation | Operation type |  | Select key pad, terminal strip, or communication operation |  |
|  | Frequency settings |  | Analog type: -10~10V, 0~10V, 4~20mA Digital type: key pad, pulse train input |  |
|  | Operation function |  | - PID control <br> - 3-wire operation <br> - Frequency limit <br> - Second function <br> - Anti-forward and reverse direction rotation <br> - Commercial transition <br> - Speed search <br> - Power braking <br> - Leakage reduction | - Up-down operation <br> - DC braking <br> - Frequency jump <br> - Slip compensation <br> - Automatic restart <br> - Automatic tuning <br> - Energy buffering <br> - Flux braking <br> - Fire Mode |
|  | Input | Multi function terminal P1-P7 in IP20 models, P1-P5 in IP66 models | Select PNP (Source) or NPN (Sink) mode. Functions can be set according to $\ln .65-\ln .71$ codes and parameter settings in IP20 models, to $\ln .65$ - In. 69 codes and parameter settings in IP66 models. |  |
|  |  |  | - Forward direction operation <br> - Reset <br> - Emergency stop <br> - Multi step speed frequencyhigh/med/low <br> - DC braking during stop <br> - Frequency increase <br> - 3-wire <br> - Local/remote operation mode transition | - Reverse direction operation <br> - External trip <br> - Jog operation <br> - Multi step acc/dechigh/med/low <br> - Second motor selection <br> - Frequency reduction <br> - Fix analog command |



## Technical Specification

| Items |  | Description |
| :---: | :---: | :---: |
| Structure/ working environment | Cooling type | Forced fan cooling structure Forced cooling type |
|  | Protection structure | IP 20 (standard), UL Open \& Enclosed Type 1 (standard up to 0030 model, option for 0034 model) (UL Enclosed Type 1 is satisfied by conduit installation option. See 15W0176B100 SinusH - Conduit Kit and Flange Kit Manual) <br> IP66 (NEMA 4X Indoor Only) |
|  | Ambient temperature | Heavy load: - $10-50^{\circ} \mathrm{C}\left(14-122^{\circ} \mathrm{F}\right)$, normal load: $-10-40^{\circ} \mathrm{C}$ (14-104ㅇ) <br> No ice or frost should be present. <br> Working under normal load at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, it is recommended that less than $80 \%$ load is applied. |
|  | Ambient humidity | Relative humidity less than $90 \%$ RH (to avoid condensation forming) |
|  | Storage temperature. | $-20^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}\left(-4-149^{\circ} \mathrm{F}\right)$ |
|  | Surrounding environment | Prevent contact with corrosive gases, inflammable gases, oil stains, dust, and other pollutants (Pollution Degree 2 Environment). |
|  | Operation altitude/oscillation | No higher than 1000m (3280ft). Less than 9.8m/ $\mathrm{sec}^{2}(1 \mathrm{G})$. |
|  | Pressure | 70-106 kPa |

### 11.3 External Dimensions (IP 20 Type)

## Sizes Eu_A, A1, A2



| SINUS H | Size | W1 | W2 | H1 | H2 | H3 | D1 | A | B | © |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0001 2T | A1 | $\begin{array}{\|l\|} \hline 68 \\ (2.68) \end{array}$ | $\begin{array}{\|l\|} \hline 61.1 \\ (2.41) \end{array}$ | $\begin{aligned} & \hline 128 \\ & (5.04) \end{aligned}$ | $\begin{aligned} & \hline 119 \\ & (4.69) \end{aligned}$ | $\begin{array}{\|l} \hline 5 \\ (0.20) \end{array}$ | $\begin{array}{\|l\|} \hline 123 \\ (4.84) \end{array}$ | $\begin{array}{\|l\|} \hline 3.5 \\ (0.14) \end{array}$ | $\begin{array}{\|l} 4 \\ (0.16) \end{array}$ | $\begin{array}{\|l\|} \hline 4.2 \\ (0.17) \end{array}$ |
| 0002 2T | A2 | $\begin{aligned} & \hline 68 \\ & (2.68) \end{aligned}$ | $\begin{aligned} & \hline 61.1 \\ & (2.41) \end{aligned}$ | $\begin{aligned} & \hline 128 \\ & (5.04) \end{aligned}$ | $\begin{aligned} & \hline 119 \\ & (4.69) \end{aligned}$ | $\begin{array}{\|l} \hline 5 \\ (0.20) \end{array}$ | $\begin{aligned} & \hline 128 \\ & (5.04) \end{aligned}$ | $\begin{aligned} & \hline 3.5 \\ & (0.14) \end{aligned}$ | $\begin{aligned} & \hline 4 \\ & (0.16) \end{aligned}$ | $\begin{aligned} & \hline 4 \\ & (0.16) \end{aligned}$ |
| $\begin{aligned} & 00012 \mathrm{~S} \\ & 00014 \mathrm{~T} \\ & 00024 \mathrm{~T} \end{aligned}$ | Eu_A | $\begin{array}{\|l\|} \hline 68 \\ (2.68) \end{array}$ | $\begin{aligned} & \hline 63.5 \\ & (2.50) \end{aligned}$ | $\begin{aligned} & \hline 180 \\ & (7.09) \end{aligned}$ | $\begin{aligned} & 170.5 \\ & (6.71) \end{aligned}$ | $\begin{array}{\|l} \hline 5 \\ (0.20) \end{array}$ | $\begin{aligned} & \hline 130 \\ & (5.12) \end{aligned}$ | $\begin{aligned} & 4.5 \\ & (0.18) \end{aligned}$ | $\begin{aligned} & 4.5 \\ & (0.18) \end{aligned}$ | $\begin{aligned} & \hline 4.2 \\ & (0.17) \end{aligned}$ |

Units: mm (inches)

## sanan <br> SANTERNO

## Sizes Eu_B, B1, B2



| SINUS H | Size | W1 | W2 | H1 | H2 | H3 | D1 | A | B | Ф |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0003 2T | B1 | $\begin{aligned} & \hline 100 \\ & (3.94) \end{aligned}$ | $\begin{array}{\|l\|} \hline 91 \\ (3.58) \end{array}$ | $\begin{array}{\|l\|} \hline 128 \\ (5.04) \end{array}$ | $\begin{array}{\|l\|} \hline 120 \\ (4.72) \end{array}$ | $\begin{array}{\|l\|} \hline 4.5 \\ (0.18) \end{array}$ | $\begin{array}{\|l\|} \hline 130 \\ (5.12) \end{array}$ | $\begin{aligned} & \hline 4.5 \\ & (0.18) \end{aligned}$ | $\begin{array}{\|l\|} \hline 4.5 \\ (0.18) \end{array}$ | $\begin{array}{\|l\|} \hline 4.5 \\ (0.18) \end{array}$ |
| 0005 2T | B2 | $\begin{aligned} & \hline 100 \\ & (3.94) \end{aligned}$ | $\begin{aligned} & \hline 91 \\ & (3.58) \end{aligned}$ | $\begin{aligned} & 128 \\ & (5.04) \end{aligned}$ | $\begin{aligned} & \hline 120 \\ & (4.72) \end{aligned}$ | $\begin{aligned} & \hline 4.5 \\ & (0.18) \end{aligned}$ | $\begin{aligned} & \hline 145 \\ & (5.71) \end{aligned}$ | $\begin{aligned} & \hline 4.5 \\ & (0.18) \end{aligned}$ | $\begin{array}{\|l} \hline 4.5 \\ (0.18) \end{array}$ | $\begin{aligned} & \hline 4.5 \\ & (0.18) \end{aligned}$ |
| $\begin{aligned} & \hline 0002 \text { 2S } \\ & 0003 \text { 2S } \\ & 00034 T \\ & 00054 T \end{aligned}$ | Eu_B | $\begin{aligned} & \hline 100 \\ & (3.94) \end{aligned}$ | $\begin{aligned} & \hline 91 \\ & (3.58) \end{aligned}$ | $\begin{aligned} & \hline 180 \\ & (7.09) \end{aligned}$ | $\begin{array}{\|l\|} \hline 170 \\ (6.69) \end{array}$ | $\begin{aligned} & \hline 5 \\ & (0.20) \end{aligned}$ | $\begin{aligned} & \hline 140 \\ & (5.51) \end{aligned}$ | $\begin{aligned} & \hline 4.5 \\ & (0.18) \end{aligned}$ | $\begin{array}{\|l} \hline 4.5 \\ (0.18) \end{array}$ | $\begin{aligned} & \hline 4.2 \\ & (0.17) \end{aligned}$ |

Units: mm (inches)

## ENERTRONICA

SANTERNO

## Sizes C, Eu_C



| SINUS H | Size | W1 | W2 | H1 | H2 | H3 | D1 | A | © |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0007 2T | C | $\begin{aligned} & 140 \\ & (5.51) \end{aligned}$ | $\begin{array}{\|l} 132.2 \\ (5.21) \end{array}$ | $\begin{aligned} & 128 \\ & (5.04) \end{aligned}$ | $\begin{aligned} & 120.7 \\ & (4.75) \end{aligned}$ | $\begin{array}{\|l\|} \hline 3.7 \\ (0.15) \end{array}$ | $\begin{aligned} & 145 \\ & (5.71) \end{aligned}$ | $\begin{aligned} & 4.4 \\ & (0.17) \end{aligned}$ | $\begin{array}{\|l} \hline 4.5 \\ (0.18) \end{array}$ |
| $\begin{aligned} & 0005 \text { 2S } \\ & 00074 \mathrm{~T} \end{aligned}$ | Eu_ | $\begin{aligned} & 140 \\ & (5.51) \end{aligned}$ | $\begin{aligned} & 132 \\ & (5.20) \end{aligned}$ | $\begin{aligned} & 180 \\ & (7.09) \end{aligned}$ | $\begin{aligned} & \hline 170 \\ & (6.69) \end{aligned}$ | $\begin{aligned} & \hline 5 \\ & (0.20) \end{aligned}$ | $\begin{aligned} & 140 \\ & (5.51) \end{aligned}$ | $\begin{aligned} & 4 \\ & (0.16) \end{aligned}$ | $\begin{aligned} & 4.2 \\ & (0.17) \end{aligned}$ |

Units: mm (inches)

## Technical Specification

## SANTERNO

## Sizes D, E, F



| SINUS H | Size | W1 | W2 | H1 | H2 | H3 | D1 | A | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline 0011 \text { 2T } \\ & 0014 \text { 2T } \\ & 00114 \mathrm{~T} \\ & 00144 \mathrm{~T} \end{aligned}$ | D | $\begin{aligned} & \hline 160 \\ & (6.30) \end{aligned}$ | $\begin{array}{\|l\|} \hline 137 \\ (5.39) \end{array}$ | $\begin{array}{\|l\|} \hline 232 \\ (9.13) \end{array}$ | $\begin{aligned} & 216.5 \\ & (8.52) \end{aligned}$ | $\begin{array}{\|l\|} \hline 10.5 \\ (0.41) \end{array}$ | $\begin{array}{\|l\|} \hline 140 \\ (5.51) \end{array}$ | $\begin{array}{\|l} \hline 5 \\ (0.20) \end{array}$ | $\begin{aligned} & \hline 5 \\ & (0.20) \end{aligned}$ |
| $\begin{aligned} & 0017 \text { 2T } \\ & 0017 \text { 4T } \\ & 00204 T \end{aligned}$ | E | $\begin{array}{\|l\|} \hline 180 \\ (7.09) \end{array}$ | $\begin{array}{\|l\|} \hline 157 \\ (6.18) \end{array}$ | $\begin{aligned} & \hline 290 \\ & (11.4) \end{aligned}$ | $\begin{aligned} & 273.7 \\ & (10.8) \end{aligned}$ | $\begin{aligned} & \hline 11.3 \\ & (0.44) \end{aligned}$ | $\begin{array}{\|l} \hline 163 \\ (6.42) \end{array}$ | $\begin{aligned} & \hline 5 \\ & (0.20) \end{aligned}$ | $\begin{aligned} & \hline 5 \\ & (0.20) \end{aligned}$ |
|  | F | $\begin{aligned} & \hline 220 \\ & (8.66) \end{aligned}$ | $\begin{aligned} & 193.8 \\ & (7.63) \end{aligned}$ | $\begin{array}{\|l\|} \hline 350 \\ (13.8) \end{array}$ | $\begin{aligned} & 331 \\ & (13.0) \end{aligned}$ | $\begin{aligned} & \hline 13 \\ & (0.51) \end{aligned}$ | $\begin{aligned} & \hline \begin{array}{l} 187 \\ (7.36) \end{array} \end{aligned}$ | $\begin{aligned} & \hline 6 \\ & (0.24) \end{aligned}$ | $\begin{aligned} & \hline 6 \\ & (0.24) \end{aligned}$ |

Units: mm (inches)

SANTERNO

## Size G



| SINUS H | Size | W1 | W2 | H1 | H2 | H3 | D1 | A |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0034 4T | G | 275 | 232 | 450 | 428.5 | 14 | 284 | 7 | 7 |
|  |  | $(10.8)$ | $(9.1)$ | $(17.7)$ | $(16.9)$ | $(0.55)$ | $(11.2)$ | $(0.28)$ | $(0.28)$ |

Units: mm (inches)

SANTERNO

### 11.4 External Dimensions (IP 66 Type)

## Sizes IP66_A, IP66_B



S000657

| SINUS H | Size | W1 | W2 | H1 | H2 | H3 | D1 | D2 | A | Ф | T1 | T2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0001 2T | IP66_A | $\begin{array}{\|l\|} \hline 180 \\ (7.09) \end{array}$ | $\begin{array}{\|l\|} \hline 170 \\ (6.69) \end{array}$ | $\begin{array}{\|l\|} \hline 256.6 \\ (10.10) \end{array}$ | $\begin{array}{\|l\|} \hline 245 \\ (9.65) \end{array}$ | $\begin{array}{\|l\|} \hline 8.2 \\ (0.32) \end{array}$ | $\begin{aligned} & 174.2 \\ & (6.86) \end{aligned}$ | $\begin{aligned} & 188.2 \\ & (7.41) \end{aligned}$ | $\begin{aligned} & \hline 4.5 \\ & (0.18) \end{aligned}$ | $\begin{array}{\|l} \hline 4.5 \\ (0.18) \end{array}$ | $\begin{aligned} & \hline 22.3 \\ & (0.88) \end{aligned}$ | - |
| 0002 2T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0001 4T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0002 4T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0003 2T | IP66_B | $\begin{aligned} & 220 \\ & (8.66) \end{aligned}$ | $\begin{aligned} & 204 \\ & (8.03) \end{aligned}$ | $\begin{aligned} & 258.8 \\ & (10.19) \end{aligned}$ | $\begin{array}{\|l\|} \hline 241 \\ (9.49) \end{array}$ | $\begin{aligned} & 11.8 \\ & (0.46) \end{aligned}$ | $\begin{aligned} & 201 \\ & (7.91) \end{aligned}$ | $\begin{aligned} & 215 \\ & (8.46) \end{aligned}$ | $\begin{aligned} & 5.5 \\ & (0.22) \end{aligned}$ | $\begin{aligned} & 5.5 \\ & (0.22) \end{aligned}$ | $\begin{aligned} & 22.3 \\ & (0.88) \end{aligned}$ | $\begin{array}{\|l} \hline 28.6 \\ (1.13) \end{array}$ |
| 0005 2T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0007 2T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0003 4T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0005 4T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0007 4T |  |  |  |  |  |  |  |  |  |  |  |  |

Units: mm (inches)

## ENERTRONICA

## SANTERNO

## Size IP66_C



S000658

| SINUSH | Size | W1 | W2 | H1 | H2 | H3 | D1 | D2 | A | Ф | T1 | T2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0011 2T | IP66_C | $\begin{aligned} & 250 \\ & (9.84) \end{aligned}$ | $\begin{array}{\|l\|} \hline 232 \\ (9.13) \end{array}$ | $\begin{array}{\|l\|} \hline 328 \\ (12.91) \end{array}$ | $\begin{array}{\|l\|} \hline 308 \\ (12.13) \end{array}$ | $\begin{aligned} & \hline 11 \\ & (0.43) \end{aligned}$ | $\begin{aligned} & 227.2 \\ & (8.94) \end{aligned}$ | $\begin{aligned} & 241.2 \\ & (9.50) \end{aligned}$ | $\begin{aligned} & 6 \\ & (0.24) \end{aligned}$ | $\begin{array}{\|l\|} \hline 6 \\ (0.24) \end{array}$ | $\begin{aligned} & 22.3 \\ & (0.88) \end{aligned}$ | $\begin{aligned} & 28.6 \\ & (1.13) \end{aligned}$ |
| 0014 2T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0011 4T |  |  |  |  |  |  |  |  |  |  |  |  |
| 0014 4T |  |  |  |  |  |  |  |  |  |  |  |  |

## Technical Specification

## Sizes IP66_D, IP66_E



| SINUS | Size | W1 | W2 | H1 | H2 | H3 | D1 | D2 | A | © | T1 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0017 2T | IP66_D | $\begin{aligned} & \hline 260 \\ & (10.24) \end{aligned}$ | $\begin{aligned} & 229 \\ & (9.02) \end{aligned}$ | $\begin{aligned} & 399.6 \\ & (15.73) \end{aligned}$ | $\begin{aligned} & \hline 377 \\ & (14.84) \end{aligned}$ | $\begin{aligned} & \hline 14.6 \\ & (0.57) \end{aligned}$ | $\begin{aligned} & 245.4 \\ & (9.66) \end{aligned}$ | $\begin{aligned} & \hline 259.6 \\ & (10.22) \end{aligned}$ | $\begin{aligned} & \hline 6 \\ & (0.24) \end{aligned}$ | - | $\begin{array}{\|l} \hline 22.3 \\ (0.88) \end{array}$ | $\begin{aligned} & 34.9 \\ & (1.37) \end{aligned}$ |
| 0017 4T |  |  |  |  |  |  |  |  |  |  |  |  |
| 00204 T |  |  |  |  |  |  |  |  |  |  |  |  |
| 00202 T | IP66_E | $\begin{aligned} & \hline 300 \\ & (11.81) \end{aligned}$ | $\begin{array}{\|l\|} \hline 270.8 \\ (10.66) \end{array}$ | $\begin{array}{\|l\|} \hline 460 \\ (18.11) \end{array}$ | $\begin{aligned} & \hline 436.5 \\ & (17.19) \end{aligned}$ | $\begin{aligned} & \hline 15.5 \\ & (0.61) \end{aligned}$ | $\begin{aligned} & \hline 250 \\ & (9.84) \end{aligned}$ | $\begin{array}{\|l\|} \hline 264 \\ (10.39) \end{array}$ | $\begin{array}{\|l\|} \hline 6 \\ (0.24) \end{array}$ | - | $\begin{aligned} & 22.3 \\ & (0.88) \end{aligned}$ | $\begin{aligned} & 44.5 \\ & (1.75) \end{aligned}$ |
| 0025 4T |  |  |  |  |  |  |  |  |  |  |  |  |
| 00304 T |  |  |  |  |  |  |  |  |  |  |  |  |

Units: mm (inches)

### 11.5 Peripheral Devices Specification

Circuit Breaker (MCCB) , Leakage Breaker and Magnetic Contactor (MC) recommended features.

| Sinus H Model <br> (Voltage Class / Code / kW) |  |  | Circuit Breaker (MCCB) | Leakage Breaker | Magnetic Contactor (MC) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Current (A) | Current (A) | Current (A) |
| $\begin{aligned} & 2 S \\ & 2 T \end{aligned}$ | 0001 | 0.4 | 5 | 5 | 9 |
|  | 0002 | 0.75 | 10 | 10 | 11 |
|  | 0003 | 1.5 | 15 | 15 | 18 |
|  | 0005 | 2.2 | 20 | 20 | 22 |
|  | 0007 | 4 | 30 | 30 | 32 |
|  | 0011 | 5.5 | 50 | 50 | 55 |
|  | 0014 | 7.5 | 60 | 60 | 65 |
|  | 0017 | 11 | 100 | 100 | 85 |
|  | 0020 | 15 | 125 | 125 | 130 |
| $4 T$ | 0001 | 0.4 | 3 | 5 | 7 |
|  | 0002 | 0.75 | 5 |  |  |
|  | 0003 | 1.5 | 10 | 10 | 9 |
|  | 0005 | 2.2 |  |  | 12 |
|  | 0007 | 4 | 20 | 20 | 18 |
|  | 0011 | 5.5 | 30 | 30 | 22 |
|  | 0014 | 7.5 |  |  | 32 |
|  | 0017 | 11 | 50 | 50 | 50 |
|  | 0020 | 15 | 60 | 60 | 65 |
|  | 0025 | 18.5 | 75 | 75 | 75 |
|  | 0030 | 22 | 100 | 100 | 85 |
|  | 0034 | 30 | 125 | 125 | 105 |

## 5rana <br> SANTERNO

### 11.6 Fuse and Reactor Specifications

| Sinus H Model (Voltage Class / Code / kW) |  |  | AC Input Fuse |  | AC Reactor <br> Code Code | DC Reactor <br> Code Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Current (A) | Voltage (V) |  |  |
| 2S | 0001 | 0.4 | 10 | 600 | IM0126002IM0126044 | - |
|  | 0002 | 0.75 |  |  |  | - |
|  | 0003 | 1.5 | 15 |  | IM0126084 | - |
|  | 0005 | 2.2 | 20 |  |  | - |
| 2T | 0001 | 0.4 | 10 | 600 | IM0126000 | IM0140054 |
|  | 0002 | 0.75 |  |  | IM0126002 |  |
|  | 0003 | 1.5 | 15 |  | IM0126004 | IM 0140104 |
|  | 0005 | 2.2 | 20 |  | IM0126044 | IM 0140154 |
|  | 0007 | 4 | 50 |  | IM0126084 |  |
|  | 0011 | 5.5 |  |  |  |  |
|  | 0014 | 7.5 | 63 |  | IM0126124 | IM0140204 |
|  | 0017 | 11 | 80 |  | IM0126144 | IM 0140254 |
|  | 0020 | 15 | 100 |  | IM0126164 | IM0140284 |
| 4T | 0001 | 0.4 | 10 | 600 | IM0126000 | - |
|  | 0002 | 0.75 |  |  |  | - |
|  | 0003 | 1.5 |  |  | IM0126002 | - |
|  | 0005 | 2.2 | 15 |  |  | IM 0140054 |
|  | 0007 | 4 | 32 |  | IM0126004 | IM0140104 |
|  | 0011 | 5.5 |  |  | IM0126044 |  |
|  | 0014 | 7.5 | 35 |  | IM0126084 | IM0140154 |
|  | 0017 | 11 | 50 |  | IM0126124 |  |
|  | 0020 | 15 | 63 |  |  | IM 0140204 |
|  | 0025 | 18.5 | 70 |  | IM0126144 | IM0140254 |
|  | 0030 | 22 | 100 |  |  |  |
|  | 0034 | 30 | 125 |  | IM0126164 | - |

- AC Reactors

| INDUCTANCE MODEL | INDUCTANCE RATINGS |  | DIMENSIONS |  |  |  |  |  |  | HOLE | WGT | LEAKAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mH | A | TYPE* | L | H | P | M | E | G | mm | kg | W |
| IM0126000 | 4,20 | 5,25 | Contact Enertronica Santerno S.p.A. |  |  |  |  |  |  |  |  |  |
| IM0126002 | 2,63 | 8,4 |  |  |  |  |  |  |  |  |  |  |
| IM0126004 | 2.00 | 11 | A | 120 | 125 | 75 | 25 | 67 | 55 | 5 | 2.9 | 29 |
| IM0126044 | 1.27 | 17 | A | 120 | 125 | 75 | 25 | 67 | 55 | 5 | 3 | 48 |
| IM0126084 | 0.70 | 32 | B | 150 | 130 | 115 | 50 | 125 | 75 | $7 \times 14$ | 5.5 | 70 |
| IM0126124 | 0.51 | 43 | B | 150 | 130 | 115 | 50 | 125 | 75 | $7 \times 14$ | 6 | 96 |
| IM0126144 | 0.30 | 68 | B | 180 | 160 | 150 | 60 | 150 | 82 | $7 \times 14$ | 9 | 150 |
| IM0126164 | 0.24 | 92 | B | 180 | 160 | 150 | 60 | 150 | 82 | 7x14 | 9.5 | 183 |

Inductance A and B type are defined in the following Figures


SANTERNO

- DC Reactors

| INDUCTANC: MODEL | INDUCTANCE RATINGS |  | DIMENSIONS |  |  |  |  | HOLE |  | NGT | LEAKAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mH | A | L | H | P | E | G | mm |  | kg | W |
| IM0140054 | 8 | 10.5 | Contact Enertronica Santerno S.p.A. |  |  |  |  |  |  |  |  |
| IM0140104 | 5.1 | 17 |  |  |  |  |  |  |  |  |  |
| IM0140154 | 2.8 | 32.5 | 160 | 140 | 120 | 100 | 100 | 7x10 | 8 |  | 50 |
| IM0140204 | 2 | 47 | 160 | 210 | 160 | 97 | 120 | $7 \times 14$ | 13 |  | 80 |
| IM0140254 | 1.2 | 69 | 160 | 210 | 160 | 97 | 120 | 7x14 | 13.5 |  | 90 |
| IM0140274 | 0.96 | 94 | Contact Enertronica Santerno S.p.A. |  |  |  |  |  |  |  |  |
| IM0140284 | 0.96 | 100 |  |  |  |  |  |  |  |  |  |

## (1) Caution

Only use Class H or RK5, UL listed input fuses and UL listed circuit breakers. See the table above for the voltage and current ratings for fuses and circuit breakers.

SANTRERNO

### 11.7 Terminal Screw Specification

## Input/Output Terminal Screw Specification

| Sinus H Model (Voltage / Code / kW) |  |  | Terminal Screw Size | Screw Torque (Nm/kfg.cm) |
| :---: | :---: | :---: | :---: | :---: |
| 2 S | 0001 | 0.4 | M3.5 | $\begin{gathered} 0.2-0.6 \\ (2.1-6.1) \end{gathered}$ |
|  | 0002 | 0.75 |  |  |
|  | 0003 | 1.5 |  |  |
|  | 0005 | 2.2 | M4 |  |
| $2 T$ | 0001 | 0.4 | M3.5 |  |
|  | 0002 | 0.75 |  |  |
|  | 0003 | 1.5 |  |  |
|  | 0005 | 2.2 |  |  |
|  | 0007 | 4 | M4 |  |
|  | 0011 | 5.5 |  |  |
|  | 0014 | 7.5 |  |  |
|  | 0017 | 11 | M5 | 0.4-1.0 |
|  | 0020 | 15 |  | (4.0~10.2) |
| $4 T$ | 0001 | 0.4 | M3.5 | $\begin{gathered} 0.2-0.6 \\ (2.1 \sim 6.1) \end{gathered}$ |
|  | 0002 | 0.75 |  |  |
|  | 0003 | 1.5 |  |  |
|  | 0005 | 2.2 |  |  |
|  | 0007 | 4 | M4 |  |
|  | 0011 | 5.5 |  |  |
|  | 0014 | 7.5 |  |  |
|  | 0017 | 11 | M5 | $\begin{gathered} 0.4-1.0 \\ (4.0 \sim 10.2) \end{gathered}$ |
|  | 0020 | 15 |  |  |
|  | 0025 | 18.5 |  |  |
|  | 0030 | 22 |  |  |
|  | 0034 | 30 | M8 | $\begin{gathered} 6.1-9.2 \\ (62 \sim 94) \\ \hline \end{gathered}$ |

## Control Circuit Terminal Screw Specification

| Terminal | Terminal Screw Size | Screw Torque (Nm / kfg•cm) |
| :--- | :---: | :---: |
| P1-P7*/CM/VR/V1/I2 /AO/AO2 | M2 | $0.22-0.25$ |
| [0034 model only] |  | $(2.2 \sim 26)$ |
| Q1/EG/24/TI/TO* |  |  |
| /SA,SB,SC/S+,S-,SG | M2.6 |  |
| A1/C1/B1, |  | 0.4 |
| A2/C2 [0034 model only] |  | $(4)$ |

## Technical Specification

## SANTERNO

* IP66 models do not support P6/P7/TI/TO terminal. Refer to Step 4 Control Terminal Wiring on page 47.


## (1) Caution

Apply the rated torque when tightening terminal screws. Loose screws may cause short circuits and malfunctions. Overtightening terminal screws may damage the terminals and cause short circuits and malfunctions. Use copper conductors only, rated at $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for power terminal wiring, and rated at $300 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for control terminal wiring.

### 11.8 Braking Resistor Specification

| Sinus H Model (Voltage/ Code/ kW) |  |  | Enertronica Santerno S.p.A. P/N | Resistance (@) | Rated Capacity (W) | IP Rating |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 2 S \\ & 2 T \end{aligned}$ | 0001 | 0.4 | RE2644200 | 200 | 350 | 55 |
|  | 0002 | 0.75 | RE2644150 | 150 | 350 | 55 |
|  | 0003 | 1.5 | RE2643560 | 56 | 350 | 55 |
|  | 0005 | 2.2 | RE3063500 | 50 | 550 | 33 |
|  | 0007 | 4 | RE3063330 | 33 | 550 | 33 |
|  | 0011 | 5.5 | RE3083200 | 20 | 1,100 | 55 |
|  | 0014 | 7.5 | RE3083150 | 15 | 1,100 | 55 |
|  | 0017 | 11 | RE3113100 | 10 | 2,200 | 54 |
|  | 0020 | 15 | RE3113100 | 10 | 2,200 | 54 |
| $4 T$ | 0001 | 0.4 | RE2644400 | 400 | 350 | 55 |
|  | 0002 | 0.75 | RE2644400 | 400 | 350 | 55 |
|  | 0003 | 1.5 | RE2644250 | 250 | 350 | 55 |
|  | 0005 | 2.2 | RE3064200 | 200 | 550 | 33 |
|  | 0007 | 4 | RE3064100 | 100 | 550 | 33 |
|  | 0011 | 5.5 | RE3083820 | 82 | 1,100 | 55 |
|  | 0014 | 7.5 | RE3083500 | 50 | 1,100 | 55 |
|  | 0017 | 11 | RE3113400 | 40 | 2,200 | 54 |
|  | 0020 | 15 | RE3113330 | 33 | 2,200 | 54 |
|  | 0025 | 18.5 | RE3483200 | 20 | 4,000 | 20 |
|  | 0030 | 22 | RE3483200 | 20 | 4,000 | 20 |
|  | 0034 | 30 | RE3763120 | 12 | 8,000 | 20 |

## ENERTRONICA

## SANTERNO

- The standard for braking torque is $150 \%$ and the working rate (\%ED) is $5 \%$. If the working rate is $10 \%$, the rated capacity for braking resistance must be calculated at twice the standard.
- Braking Resistors with higher IP degrees may be available. Please Contact Enertronica Santerno S.p.A..


## Dimensions

Model 350W - IP55


Overall Dimensions, Resistor 350W - IP55

> Model 550W - IP33


Overall Dimensions,
Resistor 550W - IP33

Model 1100W - IP55


Overall Dimensions, Resistor 1100W - IP55
Model 2200W - IP54


| $\mathbf{A}(\mathbf{m m})$ | $\mathbf{B}(\mathbf{m m})$ | $\mathbf{L}(\mathbf{m m})$ | $\mathbf{I}(\mathbf{m m})$ | $\mathbf{P}(\mathbf{m m})$ |
| :---: | :---: | :---: | :---: | :---: |
| 190 | 67 | 380 | $177-182$ | 300 |

Overall Dimensions, Resistor 2200W - IP54

## SANTERNO

Model 4000/8000W - IP20


| Power (W) | A (mm) | B (mm) | L(mm) | H (mm) | P(mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4000 | 620 | 600 | 100 | 250 | 40 |
| 8000 | 620 | 600 | 160 | 250 | 40 |

Overall Dimensions, Resistor 4000/8000W - IP20

### 11.9 Continuous Rated Current Derating

## Derating by Carrier Frequency (up to 0030 model)

The continuous rated current of the inverter is limited based on the carrier frequency and on the heavy or normal load. Refer to the following graphs.


Technical Specification

| 2S/2T |  | 4T |  |
| :--- | :--- | :--- | :--- |
| Carrier Frequency <br> (kHz) | Constant-rated <br> Current $(\%)$ | Carrier Frequency <br> $(\mathrm{kHz})$ | Constant-rated <br> Current $(\%)$ |
| $1-6$ | 100 | $1-6$ | 100 |
| 9 | 84.4 | 9 | 81.1 |
| 12 | 76.7 | 12 | 71.7 |
| 15 | 72.0 | 15 | 66.0 |

Continuous rated current (normal load)


| 2S/2T |  |  | 4 T |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model (Code/ kW) |  | DR (\%) | Model (Code / kW) |  | DR (\%) |
| 0011 | 5.5 | 85 | 0011 | 5.5 | 81.3 |
| 0014 | 7.5 | 85 | 0014 | 7.5 | 77.2 |
| 0017 | 11 | 86.6 | 0017 | 11 | 85 |
| 0020 | 15 | 90.2 | 0020 | 15 | 84.2 |
|  |  |  | 0025 | 18.5 | 91.5 |
|  |  |  | 0030 | 22 | 83.2 |

## Derating by Carrier Frequency (0034 model)

The continuous rated current of the inverter is limited based on the carrier frequency. Refer to the following graph.


| Item | Unit |  |
| :---: | :---: | :---: |
| $\mathrm{f}_{5, \mathrm{ND}}$ | [kHz] | 2 |
| $\mathrm{f}_{\mathrm{s}, \mathrm{c}}$ |  | 6 |
| $\mathrm{f}_{5, \text { max }}$ |  | 10 |
| \% of DR | [\%] | 70 |

## Derating by Input Voltage

The continuous rated current of the inverter is limited based on the input voltage. Refer to the following graphs.


Continuous rated current (4T)
(\%)
120
100
80
60
40
S000928
20

Input voltage

## Technical Specification

## Derating by Ambient Temperature and Installation Type (IP20 models only)

The constant-rated current of the inverter is limited based on the ambient temperature and installation type. Refer to the following graph.

Continuous rated current (400V)


### 11.10 Heat Emission

The following table shows the inverters' heat emission characteristics (by product capacity).
Heat emission data is based on operations with default carrier frequency settings, under normal operating conditions. For detailed information on carrier frequency, refer to 5.17 Operational Noise Settings (carrier frequency settings) on page 240.

## [ Test Condition ]

Operation at 50 Hz
Load 100\% (M-G Set load, Corresponding motor to drive)
Operation at room temperature
Carrier Frequency (Default value: 3 kHz HD, 2 kHz ND)

## [ Definition ]

Total losses = Internal losses + Heat losses
Internal losses: based on design standard such as SMPS Rated Capacity, Fan and so forth

Heat losses: depending on the Output Current
$1 \mathrm{~Wh}=3600 \mathrm{~J} ; 1 \mathrm{kcal}=4186 \mathrm{~J}$

## SANTTERNO

| Code | Voltage Class | Rated Power (kW) | Heavy Duty (HD) |  |  |  | Normal Duty (ND) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rated Output Current(A) | Total Losses <br> (W) | Interna Losses | Heat <br> Losses <br> (kcal) | Rated Output Current(A) | Total Losses <br> (W) | Internal Losses (W) | Heat <br> Losses <br> (kcal) |
| 0001 | 25 | 0.4 | 2.5 | 16 | 13 | 3 | 3.1 | 18 | 13 | 5 |
| 0002 | 25 | 0.75 | 5 | 41 | 13 | 25 | 6 | 42 | 13 | 26 |
| 0003 | 2 S | 1.5 | 8 | 54 | 13 | 36 | 9.6 | 64 | 13 | 45 |
| 0005 | 25 | 2.2 | 11 | 74 | 13 | 53 | 12 | 81 | 13 | 59 |
| 0001 | 2T | 0.4 | 2.5 | 24 | 13 | 10 | 3.1 | 25 | 13 | 8 |
| 0002 | $2 T$ | 0.75 | 5 | 24 | 13 | 9 | 6 | 26 | 13 | 12 |
| 0003 | 2T | 1.5 | 8 | 56 | 17 | 34 | 9.6 | 60 | 17 | 37 |
| 0005 | 2T | 2.2 | 11 | 59 | 17 | 36 | 12 | 62 | 17 | 39 |
| 0007 | $2 T$ | 4 | 17 | 108 | 19 | 77 | 18 | 110 | 19 | 74 |
| 0011 | 2T | 5.5 | 24 | 176 | 39 | 118 | 30 | 208 | 39 | 146 |
| 0014 | 2T | 7.5 | 32 | 188 | 39 | 128 | 40 | 236 | 39 | 170 |
| 0017 | 2T | 11 | 46 | 230 | 39 | 164 | 56 | 272 | 39 | 201 |
| 0020 | 2T | 15 | 60 | 340 | 39 | 260 | 69 | 428 | 39 | 335 |
| 0001 | 4 T | 0.4 | 1.3 | 21 | 13 | 7 | 2 | 22 | 13 | 8 |
| 0002 | $4 T$ | 0.75 | 2.5 | 17 | 13 | 4 | 3.1 | 19 | 13 | 5 |
| 0003 | 4 T | 1.5 | 4 | 45 | 17 | 24 | 5.1 | 55 | 17 | 27 |
| 0005 | 4 T | 2.2 | 5.5 | 64 | 17 | 22 | 6.9 | 76 | 17 | 27 |
| 0007 | 4 T | 4 | 9 | 68 | 21 | 40 | 10 | 131 | 21 | 41 |
| 0011 | 4T | 5.5 | 12 | 138 | 43 | 82 | 16 | 163 | 43 | 103 |
| 0014 | 4 T | 7.5 | 16 | 131 | 43 | 75 | 23 | 179 | 43 | 117 |
| 0017 | 4 T | 11 | 24 | 197 | 43 | 133 | 30 | 207 | 43 | 141 |
| 0020 | 4T | 15 | 30 | 212 | 43 | 145 | 38 | 232 | 43 | 162 |
| 0025 | 4 T | 18.5 | 39 | 320 | 43 | 238 | 44 | 353 | 43 | 267 |
| 0030 | 4T | 22 | 45 | 330 | 43 | 247 | 58 | 425 | 43 | 329 |
| 0034 | $4 T$ | 30 | 61 | 432 | 107 | 280 | 75 | 505 | 107 | 343 |

## 12 Applying 2T and 4T Drives to SinglePhase Input Application

### 12.1 Introduction

Sinus H 2T and 4T is a three-phase standard variable frequency drive(VFD). When applying single-phase power to a three-phase VFD, there are several constraints that need to be considered. Standard Pulse-Width-M odulated (PWM) VFDs use a 6-pulse diode rectifier. The 6-pulse rectification results in 300 Hz DC bus ripple when used with a three-phase 50 Hz supply.

However, under single-phase use, the DC bus ripple becomes 100 Hz and the VFDs DC bus circuit is subject to higher stress in order to deliver equivalent power.

Additionally, input currents and harmonics increase beyond those encountered with threephase input.

Input current distortion of $90 \%$ THD and greater can be expected under single-phase input, compared to approximately $40 \%$ with three-phase input as indicated in Figure 2.

Therefore, single-phase use requires the three-phase VFD power rating be reduced (derated) to avoid over stressing the rectifier and DC link components.


Figure-1 Typical Three-Phase Configuration


Figure-2 Typical Single-Phase Configuration

### 12.2 Power(HP), Input Current and Output Current

When using a three-phase VFD with single-phase input, derating the drive's output current and horsepower will be necessary because of the increase in DC bus ripple voltage and current. In addition, the input current through the remaining two phases on the diode bridge converter will approximately double, creating another derating consideration for the VFD. Input current harmonic distortion will increase beyond that with a three-phase supply making the overall input power factor low. Input current distortion over 100\% is likely under single-phase conditions without a reactor.

Therefore, the reactor is always required.
When using a motor that is selected by the three-phase drive rating criteria when using single-phase input, it may result in poor performance or premature drive failure. The selected drive of single-phase current ratings must meet or exceed the motor current rating.

### 12.3 Input Frequency and Voltage Tolerance

The single-phase current ratings are valid for 50 Hz input only. The AC supply voltage must be within the required voltage range of $240 / 480 \mathrm{Vac}+10 \%$ to $-5 \%$ to maximize motor power production. Standard product with three-phase voltage input has an allowable range of $+10 \%$ to $-15 \%$. Therefore, a stricter input voltage tolerance of +10 to $-5 \%$ applies when using the drive with a single-phase supply. The average bus voltage with single-phase input is lower than the equivalent of a three-phase input. Therefore, the maximum output voltage (motor voltage) will be lower with a single-phase input. The minimum input voltage must be no less than 228 Vac for 240 volt models and 456 Vac for 480 volt models, to ensure motor voltage production of 207 Vac and 415 Vac , respectively.

Thus, if full motor torque must be developed near base speed (full power) it will be necessary to maintain a rigid incoming line voltage so that adequate motor voltage can be produced. Operating a motor at reduced speed (reduced power), or using a motor with a base voltage that is lower than the incoming AC supply rating (ex. 208Vac motor with a 240 Vac supply), will also minimize the effect of voltage deprivation. ( 240 Vac Input $\rightarrow 208 \mathrm{~V}$ motor, 480 Vac Input $\rightarrow 400 \mathrm{~V}$ motor $)$.

## Note

Enertronica Santerno S.p.A. is not responsible for the use of Sinus H 2T and 4T drives with a single-phase supply.

## 13 Marking

### 13.1 UL mark

The UL mark applies to products in the United States and Canada. This mark indicates that UL has tested and evaluated the products and determined that the products satisfy the UL standards for product safety. If a product received UL certification, this means that all components inside the product had been certified for UL standards as well.

### 13.2 CE mark <br> 

The CE mark indicates that the products carrying this mark comply with European safety and environmental regulations. European standards include the Machinery Directive for machine manufacturers, the Low Voltage Directive for electronics manufacturers and the EMC guidelines for safe noise control.

### 13.2.1 Low Voltage Directive

We have confirmed that our products comply with the Low Voltage Directive (EN 61800-51).

### 13.2.2 EMC Directive

The Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 61800-3) covers requirements stated for drives.

## EMT/ RFI POWER LINE FILTERS

THE ES RANGE OF POWER LINE FILTERS FFM (Footprint )AND FV SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY ES INVERTERS. THE USE OF ES FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP ENSURE TROUBLE FREE USE ALONG SIDE SENSITIVE DEVICESAND COMPLIANCE TO CONDUCTED EMISSION AND IMMUNITY STANDARDS EN61800-3.


## CAUTION

IN CASE OF LEAKAGE CURRENT, A PROTECTIVE DEVICE IS USED ON POWER SUPPLY, THAT COULD BE DAMAGED WHEN POWERING ON/OFF THE DEVICE. TO AVOID THIS, THE SENSE CURRENT OF THE PROTECTIVE DEVICE SHOULD BE LARGER THAN THE VALUE OF THE LEAKAGE CURRENT. SEE TABLE BELOW.

## RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1-) Check the filter rating label to ensure that the current, voltage rating and part number are correct.

2-) For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclosure, usually directly after the enclosures circuit breaker or supply switch.

3-) The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earth connection of the filter.

4-) Mount the filter securely.
5-) Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.

6-) Connect the motor and fit the ferrite core ( output ferrite ring ) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclosure body via and earthed cable gland.

7-) Connect any control cables as instructed in the inverter instructions manual.
IT IS IMPORTANT THAT ALL LEAD LENGTHS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.


Standard Filters



FFM Filters (Footprint)



Standard Filters


## mane <br> SANTERNO



Domestic and industrial environment EN55011 Group 1 Class A $=$ EN 61800-3 C2
(*) Output Ferrite required for models with built-in filters as well.
${ }^{(* *)}$ In order to add this filter A1=C2 to a 4T (already internally A2=C3) you need to disconnect the internal filter as per the procedure described under the heading Step 6
Disabling the EMC Filter for Power Sources with Asymmetrical Grounding.

| STANDARD Filters |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sinus H (Voltage / Code / kW) |  |  | Enertronic a <br> Santerno <br> S.p.A. P/N | $\begin{aligned} & \text { CURREN } \\ & \mathrm{T}(\mathrm{~A}) \end{aligned}$ | VOLTAG E(V) | LEAKAGE CURREN T (mA) | DIMENSIONS <br> L H W (cm) | $\begin{array}{\|c} \text { Mountin } \\ \quad \mathrm{G} \\ \mathrm{Y} \\ \mathrm{X}(\mathrm{~cm}) \end{array}$ | WEIGH T | $\begin{array}{\|c} \text { Moun } \\ \hline \end{array}$ | OUTPUT FERRITE (*) |
| Nom |  |  |  |  |  |  |  |  |  |  |  |
| 2T | 000 | 0.4 |  |  | 250 |  |  |  |  |  | $\begin{gathered} \text { AC181030 } \\ 2 \end{gathered}$ |
|  | 000 | 0.7 | AC1710123 | 10 |  | 0.5-27 | 255x50x126 | $25 \times 240$ | 1.1 |  |  |
|  | 000 | 1.5 | AC1710237 | 20 |  | 0.5-27 | $335 \times 60 \times 150$ | $35 \times 320$ | 1.8 |  |  |
|  | 000 | 2.2 |  |  |  |  |  |  |  |  |  |
|  | 000 | 4.0 | AC1710343 | 30 |  | 0.5-27 | $335 \times 60 \times 150$ | $35 \times 320$ | 1.8 |  |  |
|  | 0011 | 5.5 | AC1710511 | 42 |  | 0.5-27 | $330 \times 70 \times 185$ | $45 \times 314$ | 2.8 | - | $\begin{gathered} \text { AC181040 } \\ 2 \end{gathered}$ |
|  | 001 | 7.5 | AC1710601 | 55 |  | 0.5-27 | $330 \times 80 \times 185$ | $55 \times 314$ | 3.1 | - |  |
|  | 001 | 11 | AC1710810 | 75 |  | 0.5-27 | $330 \times 80 \times 220$ | $55 \times 314$ | 4.0 | - | $\begin{gathered} \text { AC181060 } \\ 3 \end{gathered}$ |
|  | 002 | 15 | AC1711006 | 100 |  | 0.5-27 | $380 \times 90 \times 220$ | $65 \times 364$ | 5.5 | - |  |
|  | 002 | 18. | AC1711410 | 130 |  | 0.5-27 | $\begin{gathered} 440 \times 110 \times 24 \\ 0 \end{gathered}$ | $80 \times 414$ | 7.5 | - | $3$ |
|  | 003 | 22 |  |  |  |  |  |  |  |  |  |

Domestic and industrial environment EN55011 Group 2 Class A = EN61800-3 C3
${ }^{*}$ ) Output Ferrite required for models with built-in filters as well.

## Index

[DOWN] key .....  88
[ESC]key ..... 88
[HAND] key. .....  88
[LEFT] key .....  88
[MODE] key ..... 88
[MULTI]key .....  88
[OFF] key .....  88
[PROG/ Ent] key. ..... 88
[RIGHT]key ..... 88
[STOP/RESET]key ..... 88
[UP]key. ..... 88
1
1-phase 2SIP20 ..... 416
2
2 square reduction ..... 115
24 terminal ..... 54;56
2nd Motor Function group
refer to M2 (2nd MotorFunction group ) group
2nd Motorgroup referto M2(2nd Motor) group
2nd motor operation ..... 240
2nd operation mode ..... 163
$2^{\text {nd }}$ command source ..... 164
shared command (main source) ..... 164
3
3-phase 2TIP20 (0.4~4 kW) ..... 417
3-phase 2TIP20 (5.5~15 kW) ..... 418
3-phase 2TIP66 (0.4~4 kW). ..... 422
3-phase 2TIP66 (5.5~15 kW) ..... 423
3-phase 4TIP20 (0.4~4 kW). ..... 419;448
3-phase 4TIP20 (30 kW) ..... 421
3-phase 4TIP20 ( $5.5 \sim 22 \mathrm{~kW}$ ) ..... 420
3-phase 4TIP66 (0.4~4 kW). ..... 424
3-phase 4TIP66 (5.5~22 kW) ..... 425
3-Wire operation ..... 189
4
4-pole standard motor. ..... $.416 ; 419 ; 420 ; 421 ; 422 ; 425$
7
7-segment display .....  68
letters. .....  68
numbers .....  .68
A
A terminal (Normally Open) ..... 165
AC power input terminal. ..... refer to $\mathrm{R} / \mathrm{S} /$ Teminal
Acc/Dec pattem ..... 114;147
linear pattem ..... 147
S-curve pattern ..... 147
Acc/Dec reference ..... 143
Delta Freq ..... 142
MaxFreq ..... 142
Acc/Dec reference frequency ..... 141
RampTMode ..... 141
Acc/Dec stop ..... 149
Acc/Dec time ..... 141
Acc/Dec time switch frequency ..... 146
configuration via multi-function terminal ..... 144
maximum frequency ..... 141
operation frequency ..... 143
accumulated electric energy initialize ..... 251
Ad (Expanded function group) ..... 333
Ad(Advanced) group .....  70
add usergroup UserGrp SelKey ..... 249
advanced features group .....  .95
Advanced function group refer to ADV (advanced)function groupAdvanced group ...................... referto Ad(Advanced) group
analog frequency hold ..... 130
Analog Hold ..... 130
Analog Hold refer to analog frequency hold analog input ..... 52;70;95
I2 current input ..... 124

## ENERTRONICA <br> SANTERNO

12 voltage input ..... 125
TI Pulse input. ..... 127
V1 voltage input ..... 118
analog input selection switch(SW2) ..... 49; 125
analog output ..... 53; 70; 257
AO terminal .....  53
AO2 terminal ..... 53
pulse output ..... 260
voltage and current output ..... 257
analog output selection switch(SW3) ..... 49;257
AO terminal ..... 53;139;257
analog output selection switch(SW3) ..... 49
AO2 terminal .....  .53
AP(Application Function group) ..... 362
AP(Application group) ..... 70
Application group

$\qquad$
referto AP(Application) group
ARM short current fault trip .referto OverCurrent2
asymmetric ground power ..... 58
asymmetric ground structure EMC filter ..... 58
asynchronous communications system ..... 297
auto restart settings ..... 237
auto torque boost ..... 154
auto tuning ..... 154;204
auto tuning ..... 204;330
all(rotating) ..... 206
all(static) ..... 206
Tr(static) ..... 206
auxiliary frequency ..... 179
auxiliary frequency reference configuration ..... 180
auxiliary reference ..... 179
auxiliary reference gain ..... 181
configuration ..... 179
final command frequency calculation ..... 182
main reference ..... 179
B
Bterminal (Normally Closed) ..... 165
bA(Basic function group) ..... 328
bA(Basic group) ..... 70
Basic group......refer to BAS(Basic function group); refer to bA(Basic) group
basic operation .....  67
bit 165
bit (Off) ..... 165
bit (On) ..... 165
bit setting ..... 165
multi-function input setting ..... 165
multi-function output setting ..... 267
speed search setting ..... 235
stall prevention ..... 277
bootlace ferrule .....  55
brake control ..... 253
BR control ..... 253
brake engage sequence ..... 254
brake release sequence ..... 254
brake resistor ..... 46
brake unit ..... 256
braking resistance
braking torque ..... 443
braking resistors ..... 31
BU200. .....  .61
built-in communication ..... refer to RS-485
BX ..... 295; 402

## C

cable 28;38;40;41;42;43;47
ground specifications. ..... 28
power I/O cable specifications ..... 28
selection ..... 28; $38 ; 40 ; 41 ; 42 ; 43 ; 47$
shielded twisted pair .....  .64
signal(control) cable specifications ..... 29
cable tie ..... 55
carrier frequency ..... 46;239
derating. ..... 445;446
factory default ..... 240
charge indicator. ..... 36;400;407
charge lamp ..... 36
cleaning ..... 411
CM terminal ..... 51;56
CM (Communication Function group) ..... 357
CM (Communication group) ..... 70
Cn (Control Function group). ..... 339
Cn(Control) group ..... 70
CNF (configuration mode) ..... 94
code number input ..... 72
command ..... 133
Cmd Source ..... 133
configuration ..... 133
command source
fwd/rev command terminal ..... 134
keypad ..... 133
RS-485 ..... 136
run command/rotational direction configuration135
commercial power source transition ..... 242
common terminal refer to EG terminal
communication ..... 297
command loss protective operation ..... 301
communication address ..... 305
communication line connection ..... 298
communication parameters. ..... 299
communication speed ..... 299
communication standards ..... 297
memory map ..... 303
PLC ..... 297
protocol ..... 305
saving parameters defined by communication ..... 302
setting virtual multi-function input. ..... 302
Communication function group ..... refer to COM
(communication function group)
Communication group........CM (refer to Communication)group
config (CNF) mode ..... 251
Considerations for the installation
Air Pressure. .....  23
Altitude/Vibration ..... 23
Ambient Humidity .....  23
AmbientTemperature ..... 23
Environmental Factors .....  .23
contact
A contact ..... 282
B contact ..... 282
Control group ........refer to CON (Control Function group);referto Cn (Control) group
control terminal board wiring ..... 41;47;452
cooling fan ..... 243
fan control ..... 243
fan operation accumulated time ..... 271
fan operation accumulated time initialization ..... 271
cooling fan malfunction ..... 288
CPU Watch Dog fault trip ..... 295
cursorkeys ..... 88
[DOWN]key ..... 88
[LEFT]key ..... 88
[RIGHT] key. ..... 88
[UP] key ..... 88
D
DB resistor
braking resistor circuit ..... 285
DBWam \%ED ..... 285
DBWarn \%ED ..... refer to DBWarn \%ED
DCbraking after start. ..... 156
DC braking after stop ..... 157
DCbraking frequency ..... 157
DClink voltage ..... 178;227
delta wiring ..... 58
derating ..... 240
digital output ..... 262
digital source ..... 137
display ..... 90
display mode table ..... 94
display modes ..... 93
disposal ..... 411;415
dr(Drive group) ..... 70;323
draw operation ..... 178
Drive group ...refer to DRV (Drivegroup); referto dr(Drive) group
Dwell operation ..... 192
Acc/Dec dwell frequency ..... 192
acceleration dwell ..... 192
deceleration dwell. ..... 192

## E

earth leakage breaker ..... 409
EEP Rom Empty ..... 244
EG terminal .....
electronic thermal overheating protection (ETH) ..... 273
EMC filter ..... 58
asymmetric power ..... 58
disable. ..... 58
disabling ..... 59
enable ..... 59
enabling ..... 59
emergency stop fault trip ..... refer to BX
energy buffering operation ..... 227
energy saving operation ..... 232
automatic energy saving operation ..... 232
manual energy saving operation ..... 232
ESC key ..... 69
[ESC] key configuration ..... 187
[ESC] key setup ..... 136
cancel input ..... 69
Jog key ..... 74
local/remote switching ..... 137
multi-function key ..... 136
remote/local operation switching ..... 137
ETH........ refer to electronic thermal overheating protection

## Index

(ETH)
E-Thermal ..... 295
excitation current ..... 210
external 24 V power terminal refer to 24 terminal
external dimensions0.8~1.5kW(Single Phase), 1.5~2.2kW(3 Phase).....430;435;436
External Trip ..... 295; 402
external trip signal ..... 281

## F

factory default ..... 80; 82; 83
fan trip ..... 288
Fan Trip ..... 295; 402
fan warning ..... 288
Fan Warning ..... 296; 404
fatal ..... 400
fault. ..... 294
fatal ..... 400
fault/waming list ..... 294
latch ..... 400
level ..... 400
major fault ..... 295
fault monitoring ..... 109
multiple fault trips ..... 110
fault trip mode. .....  .94
ferrite ..... 55
fieldbus. 116; 133; refer to fieldbus
communication option ..... 163
filter time constant ..... 119
filter time constant number ..... 164
flux braking ..... 276
free run stop ..... 159
frequencyjump ..... 162
frequency limit ..... 160
frequencyjump ..... 162
frequency upper and lower limit value ..... 161
maximum/start frequency ..... 160
frequency reference ..... 117;156
frequency setting ..... 116
12 current input ..... 124
12 voltage input ..... 125
keypad ..... 117
RS-485 ..... 129
TIPulse input ..... 127
V1 voltage input ..... 118
variable resistor .....  81
frequency setting (pulse train) terminal refer to Tl terminal
frequency setting(voltage) terminal ..referto V1 terminalfuse440
G
ground ..... 42
class 3 ground ..... 43
ground terminal ..... 42
ground cable specifications ..... 28
ground fault trip ..... refer to Ground Trip
Ground Trip ..... 295;401
ground fault trip ..... 401
H
half duplex system ..... 297
Heavy Duty ..... 23
heavy load ..... 240;416
hunting ..... 214; 224
I
12 ..... 52;124
analog input selection switch(SW2) .....  52
frequency setting(current/voltage) terminal ..... 52
In Phase Open ..... 295;401
In(InputTerminal Block Function group) ..... 347
In(InputTerminal) group ..... 70
input and output specification applied motor ..... 416
rated input ..... 416
rated output ..... 416
input open-phase faulttrip

$\qquad$
refer to In PhaseOpen
input phase open
input open-phase protection ..... 281
input power frequency ..... 244
input power voltage ..... 244
input terminal ..... 51
CM terminal ..... 51
12 terminal ..... 52
P1-P5terminal ..... 51
P1-P7terminal ..... 51
SAterminal ..... 52
SB terminal ..... 52
SC terminal ..... 52
TIterminal ..... 52
V1 terminal .....  52
VRterminal .....
Input terminal function group .refer to IN (Inputterminalfunction group)
Input Terminal group .......refer to In(inputterminal) group
inspection
annual inspection ..... 412
bi-annual inspection) ..... 414
installation .....  .30
installation flowchart ..... 30
mounting the inverter .....  32
wiring .....
installation considerations. .....  23
J
Jog operation ..... 184
FWDJog. ..... 185
Jog frequency ..... 185
keypad ..... 187
Jog Operation
[ESC] key configuration .....  74
jump frequency ..... 162
K
keypad .....  67
[ESC]key .....  88
[HAND]key. .....  88
[MODE]key .....  88
[MULTI] key .....  88
[OFF]key .....  88
[PROG/Ent]key. .....  88
[STOP/RESET] key .....  88
configuration mode .....  94
cursorkeys .....  88
display .....  90
display .....  67
display mode. .....  .93
keypad language ..... 268
monitormode .....  .94
navigating between groups .....  .93
parameter mode ..... 94
S/W version ..... 251
trip mode. ..... 94
keypad display ..... 68; 90
keypad features
fault monitoring ..... 109
selecting a display mode. ..... 96
keypad key ..... 69
[ $\boldsymbol{\Delta} /[\boldsymbol{\nabla} /[\boldsymbol{\top}] /[\boldsymbol{\nabla}]$ key ..... 69
[ESC] key ..... 69
[RUN]key. ..... 69
[STOP/RESET] key .....  69
L
latch. ..... 400
LCD display ..... 90
LCD keypad ..... 41;67;87;90;452
LCD brightness/contrast adjustment ..... 251
operation keys. ..... 87;90
wiring length ..... 55
leakage breaker ..... 437
level. ..... 400
lifetime diagnosis of components lifetime diagnosis for fans ..... 290
lift-type load ..... 147;153; 154; 192
linear pattern ..... 147
linearV/F pattern operation ..... 150
base frequency ..... 150
start frequency ..... 150
local operation ..... 137
[ESC] key ..... 137
Local/Remote mode switching ..... 136
remote peration ..... 137
locating the installation site ..... 24
location ..... 24
loop ..... 168
loop time ..... 172
Lost Command ..... 295;403;404
command loss fault trip warming ..... 296
command losstrip ..... 295
low voltage. ..... 291;295;401
low voltage fault trip ..... 291;295
low voltage trip 2 ..... 294
LowLeakage PWM ..... 239
M
M2(2nd Motor Function group) ..... 370
M2(2nd Motor) group ..... 70
magnetic contactor. ..... 47;437
maintenance ..... 411
manual torque boost. ..... 153
master ..... 298

## ENERTRONICA

## SANTERNO

## Index

master inverter ..... 167
master unit ..... 166
MCCB ..... v; 437
meggertest ..... 412
micro surge filter ..... 46
momentary power interruption ..... 227;235;237
monitor. ..... 84
operation state monitor ..... 269
operation time monitor ..... 271
monitoring monitor mode ..... 94
monitor mode display ..... 90
motor output voltage adjustment ..... 155
motor protection ..... 273
motor rotational direction ..... 65
motor thermal protection(ETH)
ETH trip ..... 273
E-Thermal ..... 273
mounting bolt ..... 32
mounting bracket ..... 34
multifunction input terminal In.65~71 ..... 349
Pxterminal function setting ..... 349
multi function input terminal
PxDefine ..... 349
multi keypad
multi KPD ..... 167
multi keypad(multi-keypad)
slave parameter ..... 167
Multi-drop Link System ..... 297
Multi-function (open collector) output terminal Multi-function output item1(Q1 Define) ..... 355
Multi-function relay 1 item(Relay 1) ..... 354
multi-function input termina ..... 51
factory default ..... 51
multi-function input terminal off filter ..... 164
multi-function input terminal On filter ..... 164
P1-P5 ..... refer
P1-P7. ..... refer
multi-function input terminal control ..... 164
multi-function key ..... 68;74
[ESC]key ..... 74
Multi Key Sel ..... 398
multi-function key options. ..... 398
multi-function output terminal multi-function output on/off control ..... 255
multi-function output terminal and relay settings262
multi-function output terminal delay time settings 267
trip output by multi-function output terminal and relay ..... 266
multi-function(open collector) output terminal... refer toQ1 terminal
multi-keypad ..... 167
master parameter ..... 167
setting ..... 167
multi-step frequency
Speed-L/Speed-M/Speed-H ..... 132
N
N - terminal(- DC link terminal), ..... 46
no motor trip ..... 293;295;401
noise ..... 58; 121
Normal Duty .....  23
normal load ..... 240;416
Normal PWM ..... 239
NPN mode(Sink) .....  57
0
open-phase protection ..... 280
operation frequency refer to frequency setting
operation group ..... 70; 321
operation noise ..... 239
carrierfrequency ..... 239
frequency jump ..... 162
operation time. ..... 271
operation accumulated time ..... 271
operation accumulated time initialization ..... 271
option trip 293; refer to Option Trip-x
Option Trip-x ..... 295
option trip ..... 295
OU(Output Terminal Block Function group) ..... 352
OU(Output Terminal) group .....  .70
Out Phase Open ..... 295;401
output block by multi-function terminal. ..... 291
output open-phase fault trip.......refer to Out PhaseOpenoutput terminal.....refer to R/S/T terminal
Outputterminal function group .......refer to OUT (Outputterminal function group)
Output Terminal group...........refer to OU(outputterminal)group
output/communication terminal ..... 53
24 terminal ..... 54
AO terminal .....  .53
AO2 terminal .....  53
EG terminal. .....
Q1 terminal .....  .54
St/S-/SG terminal .....  54
TO terminal .....
over current trip ..... referto Over Current1
Over Current1 ..... 295; 401
OverCurrent2 ..... 295;401
Over Heat ..... 295; 401
over heat fault trip referto OverHeat
Over Load ..... 295; 400
overload fault trip ..... 295
overload warning ..... 296;403
OverVoltage ..... 295;401
over voltage trip refer to Over Voltage
overload .refer to Overload
overload overload trip ..... 275
overload warning ..... 275
overload rate ..... 240
overload trip ..... referto OverLoad
P
P/Igain ..... 237
P1+terminals(+DC link terminals) ..... 46
P2P ..... 166
communication function ..... 166
master parameter ..... 166
setting ..... 166
slave parameter ..... 166
parameter .....  .73
display changed parameter ..... 248
hide parameters. ..... 246
initialization ..... 245
initializing the parameters ..... 112
parameter lock ..... 247
parameter setting ..... 73; 104
password ..... 246;247
read/write/save ..... 244
parameter mode ..... 94
parameter setting mode .....  .95
parameter view lock ..... 246
part names. ..... 18;21;411;415
partsillustrated ..... 18; 21
password ..... 246;247;320
phase-to-phase voltage ..... 408
PID control ..... 196
basic PID operation ..... 197
configuration ..... 196
Differential time(PID D-Time) ..... 199
integral time(PID I-Time) ..... 199
oscillation ..... 200
Pgain ..... 199
PID feedback ..... 402
PID operation sleep mode ..... 202
PID output ..... 198
PID reference ..... 198
PID switching ..... 203
Pre-PID operation ..... 202
PNP mode(Source) .....  .56
PNP/NPN mode selection switch(SW1) ..... 49
NPN mode(Sink). .....  .57
PNP mode(Source) .....  56
post-installation checklist. .....  63
power consumption ..... 269;271
power slot ..... 252
power terminal ..... 46
N - terminal ..... 46
P2+/Bterminal ..... 46
U/V/W terminal ..... 46
power terminal board wiring ..... 43
power terminals
R/S/T terminals ..... 46
power-on run refer to startat power-on
$\operatorname{Pr}($ Protection Function group) ..... 365
$\operatorname{Pr}($ Protection) group ..... 70
pre-exciting time ..... 211
press regeneration prevention ..... 256
Pgain/I gain ..... 256
Protection group refer to $\operatorname{Pr}($ Protection ) group
protocol ..... 305
pulse output terminal refer to TO terminal
PWM ..... 239
frequency modulation ..... 239
Q
Q1 terminal ..... 54
quantizing ..... 121
noise ..... 121

## R

R/S/Tterminal ..... 46; 47; 407
rated. ..... 422
braking resistance rated capacity ..... 442
rated input ..... 417;422
rated output ..... 417;422
rated torque current ..... 258
rating
rated motor current. ..... 194
rated motor voltage ..... 204
rated slip frequency. ..... 195
rated slip speed ..... 194
reactor ..... 31;440
regenerated energy. ..... 159;227
remote operation ..... 137
[ESC]key ..... 137
local operation ..... 137
Local/Remote mode switching ..... 136
resonance frequency ..... 162
carrierfrequency ..... 239
frequencyjump ..... 162
RS-485 ..... 297
communication ..... 298
converter ..... 298
integrated communication ..... 129
signal terminal ..... 54;129
RS-485 signal input terminal ... refer to S+/S-/SG terminalrun preventionFwd138
Rev ..... 138
S
S/W version ..... 251
keypad ..... 251
product. ..... 251
St/S-/SG terminal .....  54
SA terminal .....  52
Safe operation mode ..... 190
safety information ..... iii
safety input power terminal ..... refer to SCterminal
safety inputA terminal refer to SA terminal
safety inputB terminal refer to SB terminal
SBterminal .....  52
SC terminal .....  52
screw specification control circuit terminal screw ..... 441
S-curve pattern ..... 147
actual Acc/Dec time. ..... 149
sensorless vector control ..... 207
configuration ..... 210
hold time ..... 211
Igain. ..... 212
IM sensorless ..... 210
Pgain ..... 212
PM synchronous motor settings ..... 219
PM synchronous motors ..... 216
pre-exciting time ..... 211
sensorless vector control operation guide .... 214; 215
sequence common terminal ..... refer to CM terminal
setting virtual multi-function input ..... 302
Single-Phase InputApplication ..... 450
Sinus H expansion common area parameter control area parameter(Read/Write) ..... 316
memory control area parameter(Read/Write). ..... 318
monitor area parameter (read only) ..... 311
slave. ..... 298
slave inverter ..... 167
slave unit. ..... 166
slip ..... 194
slip compensation operation ..... 194
speed command loss. ..... 283
speed search operation ..... 233
flying start-1 ..... 234
flying start-2. ..... 234
options. ..... 235
P/Igain ..... 237
speed unit selection (Hz or Rpm) ..... 131
square reduction
square reduction load ..... 151
V/F pattern operation. ..... 151
stall. ..... 276
bit on/off ..... 277
stall prevention ..... 276
start at power-on ..... 139
start mode ..... 155
acceleration start. ..... 156
start after DC braking ..... 156
station ..... 167
station ID ..... 305
stop mode ..... 157
DC braking after stop ..... 157
deceleration stop ..... 157
free run stop ..... 159
power braking ..... 159
storage ..... 415
Storing Temperature .....  23
surge killer ..... 47;63
SW1...refer to PNP/NPN modeselection switch(SW1); refer

## Index

 SANTERNOto PNP/NPN modeselection switch(SW1)
SW2 $\qquad$ refer to analog inputselection switch(SW2)
SW3................. refer to analog output selection switch(SW3) switch .. .49
analog input selection switch(SW2) .....  .49
analog output selection switch(SW3) ..... 49
PNP/NPN mode selection switch(SW1) .....  .49
T
target frequency
Cmd Frequency ..... 323
technical specification ..... 416
terminal ..... 165
A terminal ..... 165; 268
B terminal ..... 165; 268
terminal for frequency reference setting
referto VRterminal
test run .....  .65
TI terminal ..... 52;127
time scale
0.01 sec ..... 142
0.1 sec ..... 142
1sec ..... 142
time scale setting ..... 141
timer ..... 252
protection features groupPRT (protection features) group
TO terminal. ..... 53; 260
torque ..... 46
torque control ..... 228
torque reference setting option ..... 230
torque boost. ..... 153
auto torque boost ..... 154
manual torque boost ..... 153
overexcitation ..... 154
trip. ..... 400
erase trip history. ..... 251
fault/warning list .....  294
trip condition monitor ..... 85
trip mode .....  94
trip status reset ..... 292
troubleshooting ..... 404
troubleshooting ..... 400
otherfaults ..... 406
troubleshooting fault trips. ..... 404

## U

U\&M mode ..... 249
U/V/W terminal ..... 46; 47; 407
UF 376
UF(User Sequence Function) group .....  70
under load under load trip. ..... 286
under load warning ..... 286
Under Load. ..... 295
underload trip ..... 295;400
underload warning ..... 296; 403
underload fault trip refer to UnderLoad
update ..... 251
Up-Down operation ..... 188
US373
US(User Sequence) group .....  70
USB ..... 298
communication ..... 298
user group ..... 248
delete parameters. ..... 249
parameter registration ..... 249
Usermode .....  93
user sequence ..... 168
function block parameter ..... 173
setting ..... 168
UF group ..... 168
USgroup ..... 168
user function operation condition ..... 173
void parameter ..... 168; 173
User Sequence Function group
refer to UF(User
SequenceFunction) group
User Sequence group.....referto US(user sequence) groupuserV/F pattern operation152
using the keypad ..... 71;96
groups/codes .....  71
Jog Operation key .....  74
moving directly to a code .....  72
navigating through the codes (functions) ..... 101
parameter setting ..... 73; 104
switching between groups in parameter display mode ..... 100
V
V/F control ..... 150
linearV/F pattern operation ..... 150
square reductionV/F pattern operation ..... 151

## Index

userV/F pattern operation ..... 152
V1 terminal ..... 52; 118
V2
analog input selection switch(SW2) .....  .52
V2 input ..... 125
12 voltage input ..... 125
variable resistor ..... 81
variable torque load ..... 151;228
voltage drop ..... 46
voltage/current outputterminal ..... refer to AO terminal
VR terminal ..... 52; 118
Wwarning400
fault/warning list ..... 294
weight ..... 416
wiring .....  36
3 core cable ..... 46
control terminal board wiring .....  $.41 ; 47 ; 452$
copper cable .....  .36
cover disassembly ..... 37
ferrite .....
ground ..... 42
power terminal board wiring .....  .43
re-assembling the covers .....  62
torque. .....  36
wiring length .....  55


[^0]:    * Quantizing is disabled if ${ }^{\prime} 0$ ' is selected.

[^1]:    * Data shaded in grey is applied only for IP66 models.
    *Quantizing is disabled if '0' is selected.

[^2]:    * Displayed under DRV-06 on the LCD keypad.

[^3]:    * Displayed under DRV-06 on the LCD keypad.

[^4]:    * @ is the step number (1-18).

[^5]:    * Displayed under DRV-06 in an LCD keypad.

[^6]:    * Available on LCD keypad only.

[^7]:    * Available on the LCD keypad only.

[^8]:    * Displayed as
    

[^9]:    ${ }^{2}$ Displayed when an LCD keypad is in use.

[^10]:    ${ }^{3}$ Displayed when dr. 15 is set to 0 (Manual)

[^11]:    ${ }^{4}$ Displayed when dr. 10 is set to 1 (YES)
    ${ }^{5}$ Will not be displayed when an LCD keypad is in use

[^12]:    ${ }^{6}$ Displayed if bA. 01 is not set to 0 (None).

[^13]:    ${ }^{7}$ Displayed when dr. 09 is set to 4 (IM Sensorless)
    ${ }^{8}$ Displayed when dr. 09 (Control Mode) is set to 6 (PM Sensorless).

[^14]:    ${ }^{13}$ Displayed when Ad. 01 is set to 1 (S-curve).

[^15]:    ${ }^{18}$ Displayed when Ad. 24 is set to 1 (Yes).
    ${ }^{19}$ Displayed when Ad. 27 is set to 1 (Yes).

[^16]:    ${ }^{20}$ Displayed if either OU. 31 or OU. 33 is set to 35 (BR Control).
    ${ }^{21}$ Displayed ifAd. 50 is not set to 0 (None).

[^17]:    ${ }^{52}$ Supported in IP66 modelsonly.

[^18]:    ${ }^{58}$ Displayed only when a communication option card is installed.
    ${ }^{59}$ Displayed when AP. 01 is set to 2 (Proc PID).

[^19]:    ${ }^{60}$ Displayed when AP. 01 is set to 2 (Proc PID).
    ${ }^{61}$ Displayed when AP. 01 is set to 2 (Proc PID).

[^20]:    ${ }^{63}$ Displayed when Pr. 09 is set higher than 0.
    ${ }^{64}$ Displayed when Pr. 12 is not set to 0 (NONE).

[^21]:    ${ }^{68}$ Displayed when M2.08 is set to 4 (IM Sensorless).

